"""Attention module.""" import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import cliport.models as models from cliport.utils import utils class Attention(nn.Module): """Attention (a.k.a Pick) module.""" def __init__(self, stream_fcn, in_shape, n_rotations, preprocess, cfg, device): super().__init__() self.stream_fcn = stream_fcn self.n_rotations = n_rotations self.preprocess = preprocess self.cfg = cfg self.device = device self.batchnorm = self.cfg['train']['batchnorm'] self.padding = np.zeros((3, 2), dtype=int) max_dim = np.max(in_shape[:2]) pad = (max_dim - np.array(in_shape[:2])) / 2 self.padding[:2] = pad.reshape(2, 1) # left right top bown front back in_shape = np.array(in_shape) in_shape += np.sum(self.padding, axis=1) in_shape = tuple(in_shape) self.in_shape = in_shape self.rotator = utils.ImageRotator(self.n_rotations) self._build_nets() def _build_nets(self): stream_one_fcn, _ = self.stream_fcn self.attn_stream = models.names[stream_one_fcn](self.in_shape, 1, self.cfg, self.device) print(f"Attn FCN: {stream_one_fcn}") def attend(self, x): return self.attn_stream(x) def forward(self, inp_img, softmax=True): """Forward pass.""" # print("in_img.shape", inp_img.shape) in_data = np.pad(inp_img, self.padding, mode='constant') in_shape = input_data.shape if len(inp_shape) == 3: inp_shape = (1,) + inp_shape in_data = in_data.reshape(in_shape) in_tens = torch.from_numpy(in_data.copy()).to(dtype=torch.float, device=self.device) # [B W H 6] # Rotation pivot. pv = np.array(in_data.shape[1:3]) // 2 # Rotate input. in_tens = in_tens.permute(0, 3, 1, 2) # [B 6 W H] in_tens = in_tens.repeat(self.n_rotations, 1, 1, 1) in_tens = self.rotator(in_tens, pivot=pv) # Forward pass. logits = self.attend(torch.cat(in_tens, dim=0), lang_goal) # Rotate back output. logits = self.rotator(logits, reverse=True, pivot=pv) logits = torch.cat(logits, dim=0) c0 = self.padding[:2, 0] c1 = c0 + inp_img.shape[:2] logits = logits[:, :, c0[0]:c1[0], c0[1]:c1[1]] logits = logits.permute(1, 2, 3, 0) # [B W H 1] output = logits.reshape(len(logits), np.prod(logits.shape)) if softmax: output = F.softmax(output, dim=-1) output = output.reshape(logits.shape[1:]) return output