import torch import torch.nn as nn import torch.nn.functional as F import numpy as np class DotAttn(nn.Module): """ Dot-Attention """ def forward(self, inp, h): score = self.softmax(inp, h) return score.expand_as(inp).mul(inp).sum(1), score def softmax(self, inp, h): raw_score = inp.bmm(h.unsqueeze(2)) score = F.softmax(raw_score, dim=1) return score class ScaledDotAttn(nn.Module): """ Scaled Dot-Attention """ def forward(self, inp, h): score = self.softmax(inp, h) return score.expand_as(inp).mul(inp).sum(1), score def softmax(self, inp, h): raw_score = inp.bmm(h.unsqueeze(2)) / np.sqrt(h.shape[-1]) score = F.softmax(raw_score, dim=1) return score class Fusion(nn.Module): """ Base Fusion Class""" def __init__(self, input_dim=3): super().__init__() self.input_dim = input_dim def tile_x2(self, x1, x2, x2_proj=None): if x2_proj: x2 = x2_proj(x2) x2 = x2.unsqueeze(-1).unsqueeze(-1) x2 = x2.repeat(x1.shape[0], 1, x1.shape[-2], x1.shape[-1]) return x2 def batch_tile_x2(self, x1, x2, x2_proj=None): if x2_proj: x2 = x2_proj(x2) x2 = x2.unsqueeze(-1).unsqueeze(-1) x2 = x2.repeat(1, 1, x1.shape[-2], x1.shape[-1]) return x2 def forward(self, x1, x2, x2_mask=None, x2_proj=None): raise NotImplementedError() class FusionAdd(Fusion): """ x1 + x2 """ def __init__(self, input_dim=3): super(FusionAdd, self).__init__(input_dim=input_dim) def forward(self, x1, x2, x2_mask=None, x2_proj=None): if x1.shape != x2.shape and len(x1.shape) != len(x2.shape): x2 = self.tile_x2(x1, x2, x2_proj) return x1 + x2 class FusionMult(Fusion): """ x1 * x2 """ def __init__(self, input_dim=3): super(FusionMult, self).__init__(input_dim=input_dim) def forward(self, x1, x2, x2_mask=None, x2_proj=None): if x1.shape != x2.shape and len(x1.shape) != len(x2.shape): x2 = self.batch_tile_x2(x1, x2, x2_proj) # self.batch_tile_x2(x1, x2, x2_proj) return x1 * x2 class FusionMax(Fusion): """ max(x1, x2) """ def __init__(self, input_dim=3): super(FusionMax, self).__init__(input_dim=input_dim) def forward(self, x1, x2, x2_mask=None, x2_proj=None): if x1.shape != x2.shape and len(x1.shape) != len(x2.shape): x2 = self.tile_x2(x1, x2, x2_proj) return torch.max(x1, x2) class FusionConcat(Fusion): """ [x1; x2] """ def __init__(self, input_dim=3): super(FusionConcat, self).__init__(input_dim=input_dim) def forward(self, x1, x2, x2_mask=None, x2_proj=None): if x1.shape != x2.shape and len(x1.shape) != len(x2.shape): x2 = self.tile_x2(x1, x2, x2_proj) return torch.cat([x1, x2], dim=1) class FusionConv(Fusion): """ 1x1 convs after [x1; x2] """ def __init__(self, input_dim=3): super(FusionConv, self).__init__(input_dim=input_dim) self.conv = nn.Sequential( nn.ReLU(True), nn.Conv2d(input_dim * 2, input_dim, kernel_size=1, bias=False) ) def forward(self, x1, x2, x2_mask=None, x2_proj=None): if x1.shape != x2.shape and len(x1.shape) != len(x2.shape): x2 = self.tile_x2(x1, x2, x2_proj) x = torch.cat([x1, x2], dim=1) # [B, 2C, H, W] x = self.conv(x) # [B, C, H, W] return x class FusionConvLat(Fusion): """ 1x1 convs after [x1; x2] for lateral fusion """ def __init__(self, input_dim=3, output_dim=3): super(FusionConvLat, self).__init__(input_dim=input_dim) self.conv = nn.Sequential( nn.ReLU(True), nn.Conv2d(input_dim, output_dim, kernel_size=1, bias=False) ) def forward(self, x1, x2, x2_mask=None, x2_proj=None): if x1.shape != x2.shape and len(x1.shape) != len(x2.shape): x2 = self.tile_x2(x1, x2, x2_proj) x = torch.cat([x1, x2], dim=1) # [B, input_dim, H, W] x = self.conv(x) # [B, output_dim, H, W] return x ## ------------- NOTE ---------------- ## The following are various fusion types I experimented with. ## Most of them didn't work well ¯\_(ツ)_/¯ ## But it doesn't mean there isn't a better way of ## doing lateral and multi-modal (language+vision) fusion. class FusionFiLM(Fusion): """ FiLM (Perez et. al, https://arxiv.org/abs/1709.07871). Note: This is not used inside a Residual block before ReLU. I had a version this in UpBlock with FiLM, which didn't seem to work at all. """ def __init__(self, input_dim=3, output_dim=3): super(FusionFiLM, self).__init__(input_dim=input_dim) def forward(self, x1, x2, gamma, beta): g = self.tile_x2(x1, x2, gamma) b = self.tile_x2(x1, x2, beta) return x1 * g + b class FusionDeepConv(Fusion): """ Multi-Layer 1x1 convs after [x1; x2] """ def __init__(self, input_dim=3): super(FusionDeepConv, self).__init__(input_dim=input_dim) self.conv = nn.Sequential( nn.ReLU(True), nn.Conv2d(input_dim * 2, input_dim, kernel_size=1, bias=False), nn.ReLU(True), nn.Conv2d(input_dim, input_dim, kernel_size=1, bias=False), nn.ReLU(True), nn.Conv2d(input_dim, input_dim, kernel_size=1, bias=False), ) def forward(self, x1, x2, x2_mask=None, x2_proj=None): if x1.shape != x2.shape and len(x1.shape) != len(x2.shape): x2 = self.tile_x2(x1, x2, x2_proj) x = torch.cat([x1, x2], dim=1) # [B, 2C, H, W] x = self.conv(x) # [B, C, H, W] return x class FusionMultWord(nn.Module): """ Product with weighted-sum of words """ def __init__(self, input_dim=3): super().__init__() self.input_dim = input_dim def forward(self, x1, x2, x2_mask=None, x2_proj=None): B, D, H, W = x1.shape x2_len = int(x2_mask.count_nonzero()) weighted_x1 = torch.zeros_like(x1) for t in range(x2_len): x2_t = x2_proj(x2[:,t]) if x2_proj else x2[:,t] x2_t = x2_t.unsqueeze(-1).unsqueeze(-1).repeat(B, 1, H, W) weighted_x1 += x1 * x2_t weighted_x1 /= x2_len return weighted_x1 class FusionWordAttention(nn.Module): """ Word Attention """ def __init__(self, input_dim=3): super().__init__() self.input_dim = input_dim self.dot_attn = DotAttn() def forward(self, x1, x2, x2_mask=None, x2_proj=None): B, D, H, W = x1.shape x1_flat = x1.reshape(B, D, H*W) x2_len = int(x2_mask.count_nonzero()) # TODO: batch this unrolling? weight_sum_x1_flat = torch.zeros_like(x1_flat) for t in range(x2_len): x2_t = x2_proj(x2[:,t]) if x2_proj else x2[:,t] x2_t = x2_t.repeat(B, 1) _, attn_x1 = self.dot_attn(x1_flat.transpose(1, 2), x2_t) weight_sum_x1_flat += x1_flat * attn_x1.transpose(1, 2) weight_sum_x1_flat /= x2_len x2 = weight_sum_x1_flat.reshape(B, D, H, W) return x2 class FusionSentenceAttention(nn.Module): """ Sentence Attention """ def __init__(self, input_dim=3): super().__init__() self.input_dim = input_dim self.dot_attn = ScaledDotAttn() def forward(self, x1, x2, x2_mask=None, x2_proj=None): B, D, H, W = x1.shape x1_flat = x1.reshape(B, D, H*W) x2_t = x2_proj(x2) if x2_proj else x2 x2_t = x2_t.repeat(B, 1) _, attn_x1 = self.dot_attn(x1_flat.transpose(1, 2), x2_t) weight_sum_x1_flat = x1_flat * attn_x1.transpose(1, 2) x2 = weight_sum_x1_flat.reshape(B, D, H, W) return x2 class CrossModalAttention2d(nn.Module): """ Cross-Modal Attention. Adapted from: https://github.com/openai/CLIP/blob/main/clip/model.py#L56 """ def __init__(self, spacial_dim=7, embed_dim=1024, num_heads=32, output_dim=1024, lang_dim=512, lang_max_tokens=77): super().__init__() self.embed_dim = embed_dim self.lang_dim = lang_dim self.lang_max_tokens = lang_max_tokens self.num_heads = num_heads self.lang_proj = nn.Linear(self.lang_dim, embed_dim) self.vision_positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2, embed_dim) / embed_dim ** 0.5) self.lang_positional_embedding = nn.Parameter(torch.randn(lang_max_tokens, embed_dim) / embed_dim ** 0.5) self.k_proj = nn.Linear(embed_dim, embed_dim) self.q_proj = nn.Linear(embed_dim, embed_dim) self.v_proj = nn.Linear(embed_dim, embed_dim) self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) def forward(self, x, l, l_mask): # reshape vision features x_shape = x.shape x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC x = x + self.vision_positional_embedding[:x.shape[0], None, :].to(x.dtype) # (HW)NC # project language l = l.permute(1, 0, 2) l_shape = l.shape l = l.reshape(-1, self.lang_dim) l = self.lang_proj(l) l = l.reshape(l_shape[0], l_shape[1], self.embed_dim) l = l + self.lang_positional_embedding[:, None, :].to(l.dtype) # hard language mask l_len = int(l_mask.count_nonzero()) l = l[:l_len] l = l.repeat(1, x.shape[1], 1) x, _ = F.multi_head_attention_forward( query=x, key=l, value=l, embed_dim_to_check=x.shape[-1], num_heads=self.num_heads, q_proj_weight=self.q_proj.weight, k_proj_weight=self.k_proj.weight, v_proj_weight=self.v_proj.weight, in_proj_weight=None, in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]), bias_k=None, bias_v=None, add_zero_attn=False, dropout_p=0, out_proj_weight=self.c_proj.weight, out_proj_bias=self.c_proj.bias, use_separate_proj_weight=True, training=self.training, need_weights=False ) x = x.permute(1, 2, 0) x = x.reshape(x_shape) return x class FusionMultiHeadedWordAttention(nn.Module): """ Multi-Headed Word Attention that uses Cross Modal Attention at different scales """ def __init__(self, input_dim=3): super().__init__() self.input_dim = input_dim self.attn1 = CrossModalAttention2d(spacial_dim=7, embed_dim=1024, output_dim=1024) self.attn2 = CrossModalAttention2d(spacial_dim=14, embed_dim=512, output_dim=512) self.attn3 = CrossModalAttention2d(spacial_dim=28, embed_dim=256, output_dim=256) self.multi_headed_attns = { 1024: self.attn1, 512: self.attn2, 256: self.attn3, } def forward(self, x1, x2, x2_mask=None, x2_proj=None): emb_dim = x1.shape[1] x = self.multi_headed_attns[emb_dim](x1, x2, x2_mask) return x names = { 'add': FusionAdd, 'mult': FusionMult, 'mult_word': FusionMultWord, 'film': FusionFiLM, 'max': FusionMax, 'concat': FusionConcat, 'conv': FusionConv, 'deep_conv': FusionDeepConv, 'word_attn': FusionWordAttention, 'sent_attn': FusionSentenceAttention, 'multi_headed_word_attn': FusionMultiHeadedWordAttention, }