""" Lookup Free Quantization Proposed in https://arxiv.org/abs/2310.05737 In the simplest setup, each dimension is quantized into {-1, 1}. An entropy penalty is used to encourage utilization. Refer to https://github.com/lucidrains/vector-quantize-pytorch/blob/master/vector_quantize_pytorch/lookup_free_quantization.py https://github.com/theAdamColton/ijepa-enhanced/blob/7edef5f7288ae8f537f0db8a10044a2a487f70c9/ijepa_enhanced/lfq.py """ """ Modified Open-MAGVIT2 code to use VQConfig. """ from math import log2, ceil from collections import namedtuple import torch from torch import nn, einsum import torch.nn.functional as F from torch.nn import Module from einops import rearrange, reduce, pack, unpack from magvit2.config import VQConfig # constants LossBreakdown = namedtuple('LossBreakdown', ['per_sample_entropy', 'codebook_entropy', 'commitment', 'avg_probs']) # helper functions def exists(v): return v is not None def default(*args): for arg in args: if exists(arg): return arg() if callable(arg) else arg return None def pack_one(t, pattern): return pack([t], pattern) def unpack_one(t, ps, pattern): return unpack(t, ps, pattern)[0] # entropy def entropy(prob): return (-prob * torch.log(prob + 1e-5)).sum(dim=-1) # class def mult_along_first_dims(x, y): """ returns x * y elementwise along the leading dimensions of y """ ndim_to_expand = x.ndim - y.ndim for _ in range(ndim_to_expand): y = y.unsqueeze(-1) return x * y def masked_mean(x, m): """ takes the mean of the elements of x that are not masked the mean is taken along the shared leading dims of m equivalent to: x[m].mean(tuple(range(m.ndim))) The benefit of using masked_mean rather than using tensor indexing is that masked_mean is much faster for torch-compile on batches. The drawback is larger floating point errors """ x = mult_along_first_dims(x, m) x = x / m.sum() return x.sum(tuple(range(m.ndim))) def entropy_loss( logits, mask=None, temperature=0.01, sample_minimization_weight=1.0, batch_maximization_weight=1.0, eps=1e-5, ): """ Entropy loss of unnormalized logits logits: Affinities are over the last dimension https://github.com/google-research/magvit/blob/05e8cfd6559c47955793d70602d62a2f9b0bdef5/videogvt/train_lib/losses.py#L279 LANGUAGE MODEL BEATS DIFFUSION — TOKENIZER IS KEY TO VISUAL GENERATION (2024) """ probs = F.softmax(logits / temperature, -1) log_probs = F.log_softmax(logits / temperature + eps, -1) if mask is not None: avg_probs = masked_mean(probs, mask) else: avg_probs = reduce(probs, "... D -> D", "mean") avg_entropy = -torch.sum(avg_probs * torch.log(avg_probs + eps)) sample_entropy = -torch.sum(probs * log_probs, -1) if mask is not None: sample_entropy = masked_mean(sample_entropy, mask).mean() else: sample_entropy = torch.mean(sample_entropy) loss = (sample_minimization_weight * sample_entropy) - ( batch_maximization_weight * avg_entropy ) return sample_entropy, avg_entropy, loss class LFQ(Module): def __init__(self, config: VQConfig): super().__init__() # some assert validations assert exists(config.z_channels) or exists(config.codebook_size), \ "either dim or codebook_size must be specified for LFQ" assert not exists(config.codebook_size) or log2(config.codebook_size).is_integer(), \ f"your codebook size must be a power of 2 for lookup free quantization (suggested {2 ** ceil(log2(config.codebook_size))})" self.codebook_size = default(config.codebook_size, lambda: 2 ** dim) self.codebook_dim = int(log2(config.codebook_size)) codebook_dims = self.codebook_dim * config.num_codebooks dim = default(config.z_channels, codebook_dims) has_projections = dim != codebook_dims self.has_projections = has_projections self.dim = dim self.codebook_dim = self.codebook_dim self.num_codebooks = config.num_codebooks # for entropy loss self.sample_minimization_weight = config.sample_minimization_weight self.batch_maximization_weight = config.batch_maximization_weight # for no auxiliary loss, during inference self.token_factorization = config.token_factorization # only utilized in second stage if not self.token_factorization: # for first stage model self.register_buffer('mask', 2 ** torch.arange(self.codebook_dim - 1, -1, -1), persistent=False) else: k = self.codebook_dim // 2 self.register_buffer("mask", 2 ** torch.arange(k - 1, -1, -1), persistent=False) self.register_buffer('zero', torch.tensor(0.), persistent=False) # codes all_codes = torch.arange(config.codebook_size) bits = self.indices_to_bits(all_codes) codebook = bits * 2.0 - 1.0 self.register_buffer('codebook', codebook, persistent=False) @property def dtype(self): return self.codebook.dtype def indices_to_bits(self, x): """ x: long tensor of indices for constructing codebook, but actually not utilized in all the experiments. returns big endian bits """ mask = 2 ** torch.arange(self.codebook_dim, device=x.device, dtype=torch.long) # x is now big endian bits, the last dimension being the bits x = (x.unsqueeze(-1) & mask) != 0 return x def get_codebook_entry(self, x, bhwc): if self.token_factorization: k = self.codebook_dim // 2 mask = 2 ** torch.arange(k - 1, -1, -1, device=x.device, dtype=torch.long) else: mask = 2 ** torch.arange(self.codebook_dim-1, -1, -1, device=x.device, dtype=torch.long) x = (x.unsqueeze(-1) & mask) != 0 # find its bit representation x = x * 2.0 - 1.0 #back to the float ## scale back to the desired shape b, h, w, c = bhwc x = rearrange(x, "b (h w) c -> b h w c", h=h, w=w, c=c) x = rearrange(x, "b h w c -> b c h w") return x def bits_to_indices(self, bits): """ bits: bool tensor of big endian bits, where the last dimension is the bit dimension returns indices, which are long integers from 0 to self.codebook_size """ assert bits.shape[-1] == self.codebook_dim indices = 2 ** torch.arange( 0, self.codebook_dim, 1, dtype=torch.long, device=bits.device, ) return (bits * indices).sum(-1) def decode(self, x): """ x: ... NH where NH is number of codebook heads A longtensor of codebook indices, containing values from 0 to self.codebook_size """ x = self.indices_to_bits(x) # to some sort of float x = x.to(self.dtype) # -1 or 1 x = x * 2 - 1 x = rearrange(x, "... NC Z-> ... (NC Z)") return x def forward( self, x, return_loss_breakdown=False, mask=None, return_loss=True, flip=False, ): """ einstein notation b - batch n - sequence (or flattened spatial dimensions) d - feature dimension, which is also log2(codebook size) c - number of codebook dim """ x = rearrange(x, 'b d ... -> b ... d') x, ps = pack_one(x, 'b * d') # split out number of codebooks x = rearrange(x, 'b n (c d) -> b n c d', c=self.num_codebooks) codebook_value = torch.Tensor([1.0]).to(device=x.device, dtype=x.dtype) quantized = torch.where(x > 0, codebook_value, -codebook_value) # higher than 0 filled # calculate indices if self.token_factorization: k = self.codebook_dim // 2 indices_pre = reduce((quantized[..., :k] > 0).int() * self.mask.int(), "b n c d -> b n c", "sum") indices_post = reduce((quantized[..., k:] > 0).int() * self.mask.int(), "b n c d -> b n c", "sum") # indices_post = 2**k + indices_post #shifter to the 1024 else: if not flip: indices = reduce((quantized > 0).int() * self.mask.int(), 'b n c d -> b n c', 'sum') else: # not sure why this is necessary indices = reduce((quantized > 0).flip(-1).int() * self.mask.int(), 'b n c d -> b n c', 'sum') # entropy aux loss if self.training and return_loss: logits = 2 * einsum('... i d, j d -> ... i j', x, self.codebook) # the same as Euclidean distance up to a constant per_sample_entropy, codebook_entropy, entropy_aux_loss = entropy_loss( logits=logits, sample_minimization_weight=self.sample_minimization_weight, batch_maximization_weight=self.batch_maximization_weight ) avg_probs = self.zero else: ## calculate the codebook_entropy needed for one batch evaluation #------------------------------------------------------------------ # logits = 2 * einsum('... i d, j d -> ... i j', x, self.codebook) # probs = F.softmax(logits / 0.01, -1) # avg_probs = reduce(probs, "b n c d -> b d", "mean") # avg_probs = torch.sum(avg_probs, 0) #batch dimension #------------------------------------------------------------------- # if not training, just return dummy 0 per_sample_entropy = codebook_entropy = self.zero entropy_aux_loss = self.zero avg_probs = self.zero # commit loss if self.training: commit_loss = F.mse_loss(x, quantized.detach(), reduction='none') if exists(mask): commit_loss = commit_loss[mask] commit_loss = commit_loss.mean() else: commit_loss = self.zero # use straight-through gradients (optionally with custom activation fn) if training quantized = x + (quantized - x).detach() # transfer to quantized # merge back codebook dim quantized = rearrange(quantized, 'b n c d -> b n (c d)') # reconstitute image or video dimensions quantized = unpack_one(quantized, ps, 'b * d') quantized = rearrange(quantized, 'b ... d -> b d ...') if self.token_factorization: indices_pre = unpack_one(indices_pre, ps, "b * c") indices_post = unpack_one(indices_post, ps, "b * c") indices_pre = indices_pre.flatten() indices_post = indices_post.flatten() indices = (indices_pre, indices_post) else: indices = unpack_one(indices, ps, 'b * c') indices = indices.flatten() ret = (quantized, entropy_aux_loss, indices) if not return_loss_breakdown: return ret return ret, LossBreakdown(per_sample_entropy, codebook_entropy, commit_loss, avg_probs)