#!/bin/bash set -x ulimit -c 0 # check if NUM_GPU is unset, if so set it to 8 NUM_GPU=${NUM_GPU:-8} # SLURM_JOB_NUM_NODES to 1 SLURM_JOB_NUM_NODES=${SLURM_JOB_NUM_NODES:-1} # MASTER_ADDR to localhost MASTER_ADDR=${MASTER_ADDR:-localhost} # MASTER_PORT to 29500 MASTER_PORT=${MASTER_PORT:-29500} script_name=15dataset_mar_waction_d64_gpu_${NUM_GPU}_nodes_${SLURM_JOB_NUM_NODES} if [ "$total_memory" -ge 32000 ]; then batch_size=8 gradient_accumulation_steps=1 else batch_size=1 gradient_accumulation_steps=1 script_name="${script_name}_16g" fi torchrun --nnodes=${SLURM_JOB_NUM_NODES} --nproc_per_node=${NUM_GPU} \ --rdzv-id=${SLURM_JOB_ID} --rdzv-backend=c10d --rdzv-endpoint=${MASTER_ADDR}:${MASTER_PORT} \ train_multi_diffusion.py --genie_config genie/configs/mar_n32_h8_d64_action_modulate.json \ --output_dir data/$script_name \ --max_eval_steps 10 \ --num_episodes_per_dataset 1000000 \ --per_device_train_batch_size $batch_size \ --max_train_steps 68536 \ --gradient_accumulation_steps 1 \ --run_name $script_name \ --resume_from_checkpoint data/$script_name/ \ --train_split experiments/datasplit/dataset15_vae.yaml