#!/bin/bash set -x ulimit -c 0 script_name=${1} dataset_file=${2} export WANDB_INIT_TIMEOUT=200 # assume dataset names are split with , do a for loop #!/bin/bash echo "--------------------------------------------------" >> ~/history.txt echo "Slurm job id | job id | command | model | dataset" >> ~/history.txt echo "$SLURM_JOB_ID | $JOB_ID | evaluation | $script_name | $dataset" >> ~/history.txt datasets=$(cat experiments/datasplit/$dataset_file.yaml | shyaml get-value domains) WANDB_KEY=4c1540ebf8cb9964703ac212a937c00848a79b67 wandb login ${WANDB_KEY} export WANDB__SERVICE_WAIT=300 # Split the string into an array IFS=',' read -ra dataset_array <<< "$datasets" # Iterate over the datasets and run the evaluation script for each one for dataset in "${dataset_array[@]}"; do # Evaluate and Create the output directory dataset=$(echo "$dataset" | xargs) mkdir -p "data/${script_name}_${dataset}/output" CUDA_VISIBLE_DEVICES=0 python genie/evaluate.py --checkpoint_dir "data/${script_name}" \ --val_data_dir "data/${dataset}_magvit_traj1000000_val" --save_outputs_dir data/${script_name}_${dataset} # CUDA_VISIBLE_DEVICES=0 python genie/evaluate.py --checkpoint_dir data/${script_name} \ # --val_data_dir data/${dataset}_magvit_traj1000000_val --autoregressive_time --save_outputs_dir data/${script_name}_${dataset} # Iterate from 0 to 240 in steps of 10 # Generate python genie/generate.py --checkpoint_dir "data/${script_name}" \ --val_data_dir "data/${dataset}_magvit_traj1000000_val" \ --output_dir "data/${script_name}_${dataset}/output" # Visualize python visualize.py --token_dir "data/${script_name}_${dataset}/output" done