#!/bin/bash #SBATCH --nodes=1 #SBATCH --ntasks-per-node=1 #SBATCH --exclusive #SBATCH --time=3-0 #SBATCH --partition=learnfair #SBATCH --error=logs/std-%j.err #SBATCH --output=logs/std-%j.out #SBATCH --gpus-per-node=8 #SBATCH --cpus-per-task=32 #SBATCH --exclude=learnfair[021,025,045,081,082,089,097,098,101,102,103,105] set -x ulimit -c 0 script_name=${1} dataset_file=${2} WANDB_KEY=4c1540ebf8cb9964703ac212a937c00848a79b67 wandb login ${WANDB_KEY} # assume dataset names are split with , do a for loop #!/bin/bash echo "--------------------------------------------------" >> ~/history.txt echo "Slurm job id | job id | command | model | dataset" >> ~/history.txt echo "$SLURM_JOB_ID | $JOB_ID | evaluation | $script_name | $dataset" >> ~/history.txt datasets=$(python -c "import yaml; print(','.join(yaml.safe_load(open('experiments/datasplit/$dataset_file.yaml'))['domains'].split(',')))") IFS=',' read -ra dataset_array <<< "$datasets" # Iterate over the datasets and run the evaluation script for each one for dataset in "${dataset_array[@]}"; do dataset=$(echo "$dataset" | xargs) bash experiments/scripts/eval_action_scripts/run_evaluation_waction_valset_cluster2_raw_accel.sh $script_name $dataset done