import seaborn as sns import matplotlib import matplotlib.pyplot as plt import numpy as np import pandas as pd # Adjusting the line thickness to better match the provided example fig, ax = plt.subplots( figsize=(5, 4)) # 64, 64sqrt2, 128, 128sqrt2, 256, 256sqrt2, 512 x_values = [2.8, 10.2, 36.9, 174.22, 366.9, 755.9] # y_values = [6.33, 5.52, 5.25, 5.19, 5.02, 5.02] # , 5.09 y_values = np.exp(y_values) # 256sqrt2->700m # 512->1.3billion # Set line width for each line plot line_width = 1.5 x = [] # Iterate over each subplot (task) and plot the lines with specified styles, markers, and adjusted line width # for i, task in enumerate(tasks): # ax.plot(x_values, y_values, marker='o', linestyle='--', color='#1f78b4', linewidth=line_width) # # for i, txt in enumerate(y_values): # # ax.annotate(f"{txt:.1f}", (x_values[i], y_values[i]), textcoords="offset points", xytext=(0,10), ha='center') # ax.annotate(f"{y_values[-1]:.1f}", (x_values[-1], y_values[-1]), textcoords="offset points", xytext=(0,10), ha='center') # # Set individual titles and axis labels for each subplot # ax.set_xlabel("Model Parameters(M)", fontsize=14) # ax.set_ylabel("Perplexity", fontsize=14) # ax.set_ylim(0, 1) fig, ax1 = plt.subplots(figsize=(5, 4)) INDEX = -2 # Plot Perplexity (left y-axis) ax1.plot(x_values, y_values, marker='o', linestyle='-', color='#1f78b4', linewidth=line_width) ax1.annotate(f"{y_values[INDEX]:.1f}", (x_values[INDEX], y_values[INDEX]), textcoords="offset points", xytext=(0, 10), ha='center') ax1.set_xscale('log') ax1.set_xlabel("Model Parameters(M)", fontsize=14) ax1.set_ylabel("Perplexity", fontsize=14, color='#1f78b4') ax1.tick_params(axis='y', labelcolor='#1f78b4') # , 1.18 # Create a twin y-axis for controllability (right y-axis) ax2 = ax1.twinx() controllability_values = [0.11, 1.02, 1.07, 1.12, 1.87, 1.34] # Example values for controllability ax2.plot(x_values, controllability_values, marker='s', linestyle='--', color='#006400', linewidth=line_width) ax2.set_ylabel("Delta PSNR", fontsize=14, color='#006400') ax2.set_ylim(0, np.max(controllability_values) + 0.2) ax2.tick_params(axis='y', labelcolor='#006400') ax2.annotate(f"{controllability_values[INDEX]:.1f}", (x_values[INDEX], controllability_values[INDEX]), textcoords="offset points", xytext=(0, 10), ha='center') # Save the figure in high resolution plt.tight_layout() # plt.show() plt.savefig(f"output/model_sizes.png", dpi=300) # Adding a centralized legend that appears above the plot # fig.legend(y_values, loc='upper center', bbox_to_anchor=(0.5, 1.05), ncol=3, frameon=False, markerscale=1.5)