"""Stripped version of https://github.com/richzhang/PerceptualSimilarity/tree/master/models""" import torch import torch.nn as nn import torchvision from torchvision import models from collections import namedtuple from magvit2.util import get_ckpt_path class LPIPS(nn.Module): # Learned perceptual metric def __init__(self, use_dropout=True): super().__init__() self.scaling_layer = ScalingLayer() self.chns = [64, 128, 256, 512, 512] # vg16 features self.net = vgg16(pretrained=True, requires_grad=False) self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout) self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout) self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout) self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout) self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout) self.load_from_pretrained() for param in self.parameters(): param.requires_grad = False def load_from_pretrained(self, name="vgg_lpips"): ckpt = get_ckpt_path(name, "magvit2/modules/autoencoder/lpips") self.load_state_dict(torch.load(ckpt, map_location=torch.device("cpu")), strict=False) print("loaded pretrained LPIPS loss from {}".format(ckpt)) @classmethod def from_pretrained(cls, name="vgg_lpips"): if name != "vgg_lpips": raise NotImplementedError model = cls() ckpt = get_ckpt_path(name) model.load_state_dict(torch.load(ckpt, map_location=torch.device("cpu")), strict=False) return model def forward(self, input, target): in0_input, in1_input = (self.scaling_layer(input), self.scaling_layer(target)) outs0, outs1 = self.net(in0_input), self.net(in1_input) feats0, feats1, diffs = {}, {}, {} lins = [self.lin0, self.lin1, self.lin2, self.lin3, self.lin4] for kk in range(len(self.chns)): feats0[kk], feats1[kk] = normalize_tensor(outs0[kk]), normalize_tensor(outs1[kk]) diffs[kk] = (feats0[kk] - feats1[kk]) ** 2 res = [spatial_average(lins[kk].model(diffs[kk]), keepdim=True) for kk in range(len(self.chns))] val = res[0] for l in range(1, len(self.chns)): val += res[l] return val class ScalingLayer(nn.Module): def __init__(self): super(ScalingLayer, self).__init__() self.register_buffer('shift', torch.Tensor([-.030, -.088, -.188])[None, :, None, None]) self.register_buffer('scale', torch.Tensor([.458, .448, .450])[None, :, None, None]) def forward(self, inp): return (inp - self.shift) / self.scale class NetLinLayer(nn.Module): """ A single linear layer which does a 1x1 conv """ def __init__(self, chn_in, chn_out=1, use_dropout=False): super(NetLinLayer, self).__init__() layers = [nn.Dropout(), ] if (use_dropout) else [] layers += [nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False), ] self.model = nn.Sequential(*layers) class vgg16(torch.nn.Module): def __init__(self, requires_grad=False, pretrained=True): super(vgg16, self).__init__() vgg_pretrained_features = models.vgg16( weights=torchvision.models.VGG16_Weights.IMAGENET1K_V1 if pretrained else None ).features self.slice1 = torch.nn.Sequential() self.slice2 = torch.nn.Sequential() self.slice3 = torch.nn.Sequential() self.slice4 = torch.nn.Sequential() self.slice5 = torch.nn.Sequential() self.N_slices = 5 for x in range(4): self.slice1.add_module(str(x), vgg_pretrained_features[x]) for x in range(4, 9): self.slice2.add_module(str(x), vgg_pretrained_features[x]) for x in range(9, 16): self.slice3.add_module(str(x), vgg_pretrained_features[x]) for x in range(16, 23): self.slice4.add_module(str(x), vgg_pretrained_features[x]) for x in range(23, 30): self.slice5.add_module(str(x), vgg_pretrained_features[x]) if not requires_grad: for param in self.parameters(): param.requires_grad = False def forward(self, X): h = self.slice1(X) h_relu1_2 = h h = self.slice2(h) h_relu2_2 = h h = self.slice3(h) h_relu3_3 = h h = self.slice4(h) h_relu4_3 = h h = self.slice5(h) h_relu5_3 = h vgg_outputs = namedtuple("VggOutputs", ['relu1_2', 'relu2_2', 'relu3_3', 'relu4_3', 'relu5_3']) out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3) return out def normalize_tensor(x,eps=1e-10): norm_factor = torch.sqrt(torch.sum(x**2,dim=1,keepdim=True)) return x/(norm_factor+eps) def spatial_average(x, keepdim=True): return x.mean([2,3],keepdim=keepdim)