""" Modified Open-MAGVIT2 code to use VQConfig. """ import torch import torch.nn as nn import torch.nn.functional as F from magvit2.config import VQConfig from magvit2.modules.losses.lpips import LPIPS from magvit2.modules.discriminator.model import NLayerDiscriminator, weights_init class DummyLoss(nn.Module): def __init__(self): super().__init__() def adopt_weight(weight, global_step, threshold=0, value=0.): if global_step < threshold: weight = value return weight def hinge_d_loss(logits_real, logits_fake): loss_real = torch.mean(F.relu(1. - logits_real)) loss_fake = torch.mean(F.relu(1. + logits_fake)) d_loss = 0.5 * (loss_real + loss_fake) return d_loss def vanilla_d_loss(logits_real, logits_fake): d_loss = 0.5 * ( torch.mean(torch.nn.functional.softplus(-logits_real)) + torch.mean(torch.nn.functional.softplus(logits_fake))) return d_loss def _sigmoid_cross_entropy_with_logits(labels, logits): """ non-saturating loss """ zeros = torch.zeros_like(logits, dtype=logits.dtype) condition = (logits >= zeros) relu_logits = torch.where(condition, logits, zeros) neg_abs_logits = torch.where(condition, -logits, logits) return relu_logits - logits * labels + torch.log1p(torch.exp(neg_abs_logits)) def non_saturate_gen_loss(logits_fake): """ logits_fake: [B 1 H W] """ B, _, _, _ = logits_fake.shape logits_fake = logits_fake.reshape(B, -1) logits_fake = torch.mean(logits_fake, dim=-1) gen_loss = torch.mean(_sigmoid_cross_entropy_with_logits( labels = torch.ones_like(logits_fake), logits=logits_fake )) return gen_loss def non_saturate_discriminator_loss(logits_real, logits_fake): B, _, _, _ = logits_fake.shape logits_real = logits_fake.reshape(B, -1) logits_fake = logits_fake.reshape(B, -1) logits_fake = logits_fake.mean(dim=-1) logits_real = logits_real.mean(dim=-1) real_loss = _sigmoid_cross_entropy_with_logits( labels=torch.ones_like(logits_real), logits=logits_real) fake_loss = _sigmoid_cross_entropy_with_logits( labels= torch.zeros_like(logits_fake), logits=logits_fake ) discr_loss = real_loss.mean() + fake_loss.mean() return discr_loss class LeCAM_EMA(object): def __init__(self, init=0., decay=0.999): self.logits_real_ema = init self.logits_fake_ema = init self.decay = decay def update(self, logits_real, logits_fake): self.logits_real_ema = self.logits_real_ema * self.decay + torch.mean(logits_real).item() * (1- self.decay) self.logits_fake_ema = self.logits_fake_ema * self.decay + torch.mean(logits_fake).item() * (1 - self.decay) def lecam_reg(real_pred, fake_pred, lecam_ema): reg = torch.mean(F.relu(real_pred - lecam_ema.logits_fake_ema).pow(2)) + \ torch.mean(F.relu(lecam_ema.logits_real_ema - fake_pred).pow(2)) return reg class VQLPIPSWithDiscriminator(nn.Module): # def __init__(self, disc_start, codebook_weight=1.0, pixelloss_weight=1.0, # disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0, # commit_weight = 0.25, codebook_enlarge_ratio=3, codebook_enlarge_steps=2000, # perceptual_weight=1.0, use_actnorm=False, disc_conditional=False, # disc_ndf=64, disc_loss="hinge", gen_loss_weight=None, lecam_loss_weight=None): def __init__(self, config: VQConfig): super().__init__() assert config.disc_loss in ["hinge", "vanilla", "non_saturate"] self.codebook_weight = config.codebook_weight self.pixel_weight = config.pixelloss_weight self.perceptual_loss = LPIPS().eval() self.perceptual_weight = config.perceptual_weight self.commit_weight = config.commit_weight self.codebook_enlarge_ratio = config.codebook_enlarge_ratio self.codebook_enlarge_steps = config.codebook_enlarge_steps self.gen_loss_weight = config.gen_loss_weight self.lecam_loss_weight = config.lecam_loss_weight if self.lecam_loss_weight is not None: self.lecam_ema = LeCAM_EMA() self.discriminator = NLayerDiscriminator( input_nc=config.disc_in_channels, n_layers=config.disc_num_layers, use_actnorm=config.use_actnorm, ndf=config.disc_ndf ).apply(weights_init) self.discriminator_iter_start = config.disc_start self.disc_loss = { "hinge": hinge_d_loss, "vanilla": vanilla_d_loss, "non_saturate": non_saturate_discriminator_loss, }[config.disc_loss] print(f"VQLPIPSWithDiscriminator running with {config.disc_loss} loss.") self.disc_factor = config.disc_factor self.discriminator_weight = config.disc_weight self.disc_conditional = config.disc_conditional def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None): if last_layer is not None: nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0] g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0] else: nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0] g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0] d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4) d_weight = torch.clamp(d_weight, 0.0, 1e4).detach() d_weight = d_weight * self.discriminator_weight return d_weight def forward(self, codebook_loss, loss_break, inputs, reconstructions, optimizer_idx, global_step, last_layer=None, cond=None, split="train"): # now the GAN part if optimizer_idx == 0: ### This code was previously outside this if statement, but seemed unnecessary? - Kevin rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous()) nll_loss = rec_loss.clone() if self.perceptual_weight > 0: p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous()) nll_loss = nll_loss + self.perceptual_weight * p_loss else: p_loss = torch.tensor([0.0]) nll_loss = torch.mean(nll_loss) ### # generator update if cond is None: assert not self.disc_conditional logits_fake = self.discriminator(reconstructions.contiguous()) else: assert self.disc_conditional logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1)) g_loss = non_saturate_gen_loss(logits_fake) if self.gen_loss_weight is None: try: d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer) except RuntimeError: assert not self.training d_weight = torch.tensor(0.0) else: d_weight = torch.tensor(self.gen_loss_weight) disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start) if not self.training: real_g_loss = disc_factor * g_loss g_loss = d_weight * disc_factor * g_loss scale_codebook_loss = self.codebook_weight * codebook_loss #entropy_loss if self.codebook_enlarge_ratio > 0: scale_codebook_loss = self.codebook_enlarge_ratio * (max(0, 1 - global_step / self.codebook_enlarge_steps)) * scale_codebook_loss + scale_codebook_loss loss = nll_loss + g_loss + scale_codebook_loss + loss_break.commitment * self.commit_weight if disc_factor == 0: log = {"{}/total_loss".format(split): loss.clone().detach(), "{}/per_sample_entropy".format(split): loss_break.per_sample_entropy.detach(), "{}/codebook_entropy".format(split): loss_break.codebook_entropy.detach(), "{}/commit_loss".format(split): loss_break.commitment.detach(), "{}/nll_loss".format(split): nll_loss.detach(), "{}/reconstruct_loss".format(split): rec_loss.detach().mean(), "{}/perceptual_loss".format(split): p_loss.detach().mean(), "{}/d_weight".format(split): torch.tensor(0.0), "{}/disc_factor".format(split): torch.tensor(0.0), "{}/g_loss".format(split): torch.tensor(0.0), } else: if self.training: log = {"{}/total_loss".format(split): loss.clone().detach(), "{}/per_sample_entropy".format(split): loss_break.per_sample_entropy.detach(), "{}/codebook_entropy".format(split): loss_break.codebook_entropy.detach(), "{}/commit_loss".format(split): loss_break.commitment.detach(), "{}/entropy_loss".format(split): codebook_loss.detach(), "{}/nll_loss".format(split): nll_loss.detach(), "{}/reconstruct_loss".format(split): rec_loss.detach().mean(), "{}/perceptual_loss".format(split): p_loss.detach().mean(), "{}/d_weight".format(split): d_weight, "{}/disc_factor".format(split): torch.tensor(disc_factor), "{}/g_loss".format(split): g_loss.detach(), } else: # validation only monitor the reconstruct_loss and p_loss log = { "{}/reconstruct_loss".format(split): rec_loss.detach().mean(), "{}/perceptual_loss".format(split): p_loss.detach().mean(), "{}/g_loss".format(split): real_g_loss.detach(), } return loss, log if optimizer_idx == 1: # second pass for discriminator update if cond is None: logits_real = self.discriminator(inputs.contiguous().detach()) logits_fake = self.discriminator(reconstructions.contiguous().detach()) else: logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1)) logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1)) disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start) #--------------------------------------------------------------------------------------- # Non-Saturate Loss is the Format of GAN Training, for D Loss, We still adopt Hinge Loss #--------------------------------------------------------------------------------------- if self.lecam_loss_weight is not None: self.lecam_ema.update(logits_real, logits_fake) lecam_loss = lecam_reg(logits_real, logits_fake, self.lecam_ema) non_saturate_d_loss = self.disc_loss(logits_real, logits_fake) d_loss = disc_factor * (lecam_loss * self.lecam_loss_weight + non_saturate_d_loss) else: non_saturate_d_loss = self.disc_loss(logits_real, logits_fake) d_loss = disc_factor * non_saturate_d_loss # d_loss = disc_factor * if disc_factor == 0: log = {"{}/disc_loss".format(split): torch.tensor(0.0), "{}/logits_real".format(split): torch.tensor(0.0), "{}/logits_fake".format(split): torch.tensor(0.0), "{}/disc_factor".format(split): torch.tensor(disc_factor), "{}/lecam_loss".format(split): lecam_loss.detach(), "{}/non_saturated_d_loss".format(split): non_saturate_d_loss.detach(), } else: log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(), "{}/logits_real".format(split): logits_real.detach().mean(), "{}/logits_fake".format(split): logits_fake.detach().mean(), "{}/disc_factor".format(split): torch.tensor(disc_factor), "{}/lecam_loss".format(split): lecam_loss.detach(), "{}/non_saturated_d_loss".format(split): non_saturate_d_loss.detach(), } return d_loss, log