import cv2 import torch import numpy as np import einops import skimage import time from genie.st_mask_git import STMaskGIT from genie.st_mar import STMAR from datasets.utils import get_image_encoder from data import DATA_FREQ_TABLE from train_diffusion import SVD_SCALE from typing import Optional, Tuple, Callable, Dict class Simulator: def set_initial_state(self, state): """ the initial state of the simulated scene e.g. 1. in robomimic, it's the scene state vector 2. in genie, it's the initial frames to prompt the model """ raise NotImplementedError @torch.inference_mode() def step(self, action): raise NotImplementedError def reset(self): raise NotImplementedError def close(self): raise NotImplementedError @property def dt(self): raise NotImplementedError class PhysicsSimulator(Simulator): def __init__(self): super().__init__() # physics engine should be able to update dt def set_dt(self, dt): raise NotImplementedError # physics engine should be able to get scene state # e.g., robot joint positions, object positions, etc. def get_raw_state(self, port: Optional[str] = None): raise NotImplementedError @property def action_dimension(self): raise NotImplementedError class LearnedSimulator(Simulator): def __init__(self): super().__init__() # data replayed respect physics, so we inherit from PhysicsSimulator # it can be considered as a special case of PhysicsSimulator class ReplaySimulator(PhysicsSimulator): def __init__(self, frames, prompt_horizon: int = 0, dt: Optional[float] = None ): super().__init__() self.frames = frames self.frame_idx = prompt_horizon assert self.frame_idx < len(self.frames) self._dt = dt self.prompt_horizon = prompt_horizon def __len__(self): return len(self.frames) - self.prompt_horizon def step(self, action): frame = self.frames[self.frame_idx] assert self.frame_idx < len(self.frames) self.frame_idx = self.frame_idx + 1 return { 'pred_next_frame': frame } def reset(self): # return current frame = last frame of prompt self.frame_idx = self.prompt_horizon return self.prompt()[-1] def prompt(self): return self.frames[:self.prompt_horizon] @property def dt(self): return self._dt class GenieSimulator(LearnedSimulator): average_delta_psnr_over = 5 def __init__(self, # image preprocessing max_image_resolution: int = 1024, resize_image: bool = True, resize_image_resolution: int = 256, # tokenizer setting image_encoder_type: str = "temporalvae", image_encoder_ckpt: str = "stabilityai/stable-video-diffusion-img2vid", quantize: bool = False, quantization_slice_size: int = 16, # dynamics backbone setting backbone_type: str = "stmar", backbone_ckpt: str = "data/mar_ckpt/robomimic", prompt_horizon: int = 11, inference_iterations: Optional[int] = None, sampling_temperature: float = 0.0, action_stride: Optional[int] = None, domain: str = "robomimic", genie_frequency: int = 2, # misc measure_step_time: bool = False, compute_psnr: bool = False, compute_delta_psnr: bool = False, # act as a signal for controlability gaussian_action_perturbation_scale: Optional[float] = None, device: str = 'cuda', physics_simulator: Optional[PhysicsSimulator] = None, physics_simulator_teacher_force: Optional[int] = None, post_processor: Optional[Callable] = None, # on the predicted image, e.g., add action allow_external_prompt: bool = False ): super().__init__() assert quantize == (image_encoder_type == "magvit"), \ "Currently quantization if and only if magvit is the image encoder." assert image_encoder_type in ["magvit", "temporalvae"], \ "Image encoder type must be either 'magvit' or 'temporalvae'." assert not quantize or image_encoder_type == "magvit", \ "If quantize is enabled, image encoder type must be 'magvit'." assert backbone_type in ["stmaskgit", "stmar"], \ "Backbone type must be either 'stmaskgit' or 'stmar'." if physics_simulator is None: assert physics_simulator_teacher_force is None, \ "Physics simulator teacher force is only available when physics simulator is provided." assert compute_psnr is False, \ "PSNR computation is only available when physics simulator is provided." assert compute_delta_psnr is False, \ "Delta PSNR computation is only available when physics simulator is provided." if action_stride is None: action_stride = DATA_FREQ_TABLE[domain] // genie_frequency if compute_delta_psnr: compute_psnr = True # to compute delta psnr, psnr must be computed if inference_iterations is None: if backbone_type == "stmaskgit": inference_iterations = 2 elif backbone_type == "stmar": inference_iterations = 2 # misc self.device = torch.device(device) self.measure_step_time = measure_step_time self.compute_psnr = compute_psnr self.compute_delta_psnr = compute_delta_psnr self.allow_external_prompt = allow_external_prompt # image preprocessing self.max_image_resolution = max_image_resolution self.resize_image = resize_image self.resize_image_resolution = resize_image_resolution # load image encoder self.image_encoding_dtype = torch.bfloat16 self.quantize = quantize self.quant_slice_size = quantization_slice_size self.image_encoder_type = image_encoder_type self.image_encoder = get_image_encoder( image_encoder_type, image_encoder_ckpt ).to(device=self.device, dtype=self.image_encoding_dtype).eval() # load STMaskGIT model (STMAR is inherited from STMaskGIT) self.prompt_horizon = prompt_horizon self.domain = domain self.genie_frequency = genie_frequency self.inference_iterations = inference_iterations self.sampling_temperature = sampling_temperature self.action_stride = action_stride self.gauss_act_perturb_scale = gaussian_action_perturbation_scale self.backbone_type = backbone_type if backbone_type == "stmaskgit": self.backbone = STMaskGIT.from_pretrained(backbone_ckpt) else: self.backbone = STMAR.from_pretrained(backbone_ckpt) self.backbone = self.backbone.to(device=self.device).eval() self.post_processor = post_processor # load physics simulator if available # the phys sim to get ground truth image, # assume the phys sim has aligned prompt frames self.gt_phys_sim = physics_simulator self.gt_teacher_force = physics_simulator_teacher_force # history buffer, i.e., the input to the model self.cached_actions = None # (prompt_horizon, action_stride, A) self.cached_latent_frames = None # (prompt_horizon, ...) self.init_prompt = None # (prompt_frames, prompt_actions) self.step_count = 0 # report model size print( "================ Model Size Report ================\n" f" encoder size: {sum(p.numel() for p in self.image_encoder.parameters()) / 1e6:.3f}M \n" f" backbone size: {sum(p.numel() for p in self.backbone.parameters()) / 1e6:.3f}M\n" "===================================================" ) def set_initial_state(self, state: Tuple[np.ndarray, np.ndarray]): if not self.allow_external_prompt and self.gt_phys_sim is not None: raise NotImplementedError("Initial state is set by the physics simulator.") self.init_prompt = state @torch.inference_mode() def step(self, action: np.ndarray) -> Dict: # action: (action_stride, A) OR (A,) # return: (H, W, 3) assert self.cached_latent_frames is not None and self.cached_actions is not None, \ "Model is not prompted yet. Please call `set_initial_state` first." if action.ndim == 1: action = np.tile(action, (self.action_stride, 1)) # perturb action if self.gauss_act_perturb_scale is not None: action = np.random.normal(action, self.gauss_act_perturb_scale) # encoding input_latent_states = torch.cat([ self.cached_latent_frames, torch.zeros_like(self.cached_latent_frames[[0]]), ]).unsqueeze(0).to(torch.float32) input_latent_states = input_latent_states[:, :self.prompt_horizon + 1] # dtype conversion and mask token if self.backbone_type == "stmaskgit": input_latent_states = input_latent_states.long() input_latent_states[:, -1] = self.backbone.mask_token_id elif self.backbone_type == "stmar": input_latent_states[:, -1] = self.backbone.mask_token # dynamics rollout action = torch.from_numpy(action).to(device=self.device) input_actions = torch.cat([ # (1, prompt_horizon + 1, action_stride * A) self.cached_actions, action.unsqueeze(0), action.unsqueeze(0) # the last action is not used, but we need a_{t-1}, s_{t-1} to predict s_t ]).view(1, -1, action.shape[-1]).to(torch.float32) # + 1 input_actions = input_actions[:, :self.prompt_horizon + 1] if self.measure_step_time: start_time = time.time() pred_next_latent_state = self.backbone.maskgit_generate( input_latent_states, out_t=input_latent_states.shape[1] - 1,, maskgit_steps=self.inference_iterations, temperature=self.sampling_temperature, action_ids=input_actions, domain=[self.domain] )[0].squeeze(0) # decoding pred_next_frame = self._decode_image(pred_next_latent_state) # timing if self.measure_step_time: end_time = time.time() step_result = {'pred_next_frame': pred_next_frame,} if self.measure_step_time: step_result['step_time'] = end_time - start_time # physics simulation if self.gt_phys_sim is not None: for a in action.cpu().numpy(): gt_result = self.gt_phys_sim.step(a) gt_next_frame = cv2.resize(gt_result['pred_next_frame'], pred_next_frame.shape[:2]) step_result['gt_next_frame'] = gt_next_frame gt_result.pop('pred_next_frame') step_result.update(gt_result) # gt state observation try: raw_state = self.gt_phys_sim.get_raw_state() step_result.update(raw_state) except NotImplementedError: pass # compute PSNR against ground truth if self.compute_psnr: psnr = skimage.metrics.peak_signal_noise_ratio( image_true=gt_next_frame / 255., image_test=pred_next_frame / 255., data_range=1.0 ) step_result['psnr'] = psnr # controlability metric if self.compute_delta_psnr: delta_psnr = 0.0 for _ in range(self.average_delta_psnr_over): # re-mask the input latent states for masked prediction if self.backbone_type == "stmaskgit": input_latent_states = input_latent_states.long() input_latent_states[:, self.prompt_horizon] = self.backbone.mask_token_id elif self.backbone_type == "stmar": input_latent_states[:, self.prompt_horizon] = self.backbone.mask_token # sample random action from N(0, 1) random_input_actions = torch.randn_like(input_actions) random_pred_next_latent_state = self.backbone.maskgit_generate( input_latent_states, out_t=self.prompt_horizon, maskgit_steps=self.inference_iterations, temperature=self.sampling_temperature, action_ids=random_input_actions, domain=[self.domain], skip_normalization=True )[0].squeeze(0) random_pred_next_frame = self._decode_image(random_pred_next_latent_state) this_delta_psnr = step_result['psnr'] - skimage.metrics.peak_signal_noise_ratio( image_true=gt_next_frame / 255., image_test=random_pred_next_frame / 255., data_range=1.0 ) delta_psnr += this_delta_psnr / self.average_delta_psnr_over step_result['delta_psnr'] = delta_psnr if self.gt_teacher_force is not None and self.step_count % self.gt_teacher_force == 0: pred_next_latent_state = self._encode_image(gt_next_frame) # update history buffer self.cached_latent_frames = torch.cat([ self.cached_latent_frames[1:], pred_next_latent_state.unsqueeze(0) ]) self.cached_actions = torch.cat([ self.cached_actions[1:], action.unsqueeze(0) ]) # post processing if self.post_processor is not None: pred_next_frame = self.post_processor(pred_next_frame, action) self.step_count += 1 return step_result @torch.inference_mode() def _encode_image(self, image: np.ndarray) -> torch.Tensor: # (H, W, 3) image = torch.from_numpy( self._normalize_image(image).transpose(2, 0, 1) ).to(device=self.device, dtype=self.image_encoding_dtype ).unsqueeze(0) H, W = image.shape[-2:] if self.quantize: H //= self.quant_slice_size W //= self.quant_slice_size _, _, indices, _ = self.image_encoder.encode(image, flip=True) indices = einops.rearrange(indices, "(h w) -> h w", h=H, w=W) indices = indices.to(torch.int32) return indices else: if self.image_encoder_type == "magvit": latent = self.image_encoder.encode_without_quantize(image) elif self.image_encoder_type == "temporalvae": latent_dist = self.image_encoder.encode(image).latent_dist latent = latent_dist.mean latent *= SVD_SCALE latent = einops.rearrange(latent, "b c h w -> b h w c") else: pass latent = latent.squeeze(0).to(torch.float32) return latent @torch.inference_mode() def _decode_image(self, latent: torch.Tensor) -> np.ndarray: # latent can be either quantized indices or raw latent # return (H, W, 3) latent = latent.to(device=self.device).unsqueeze(0) if self.quantize: latent = self.image_encoder.quantize.get_codebook_entry( einops.rearrange(latent, "b h w -> b (h w)"), bhwc=(*latent.shape, self.image_encoder.quantize.codebook_dim) ).flip(1) latent = latent.to(device=self.device, dtype=self.image_encoding_dtype) if self.image_encoder_type == "magvit": decoded_image = self.image_encoder.decode(latent) elif self.image_encoder_type == "temporalvae": latent = einops.rearrange(latent, "b h w c -> b c h w") latent /= SVD_SCALE # HACK: clip for less visual artifacts latent = torch.clamp(latent, -25, 25) decoded_image = self.image_encoder.decode(latent, num_frames=1).sample decoded_image = decoded_image.squeeze(0).to(torch.float32).detach().cpu().numpy() decoded_image = self._unnormalize_image(decoded_image).transpose(1, 2, 0) return decoded_image def _normalize_image(self, image: np.ndarray) -> np.ndarray: # (H, W, 3) normalized to [-1, 1] # if `resize`, resize the shorter side to `resized_res` # and then do a center crop image = np.asarray(image, dtype=np.float32) image /= 255. H, W = image.shape[:2] # resize if asked if self.resize_image: resized_res = self.resize_image_resolution if H < W: Hnew, Wnew = resized_res, int(resized_res * W / H) else: Hnew, Wnew = int(resized_res * H / W), resized_res image = cv2.resize(image, (Wnew, Hnew)) # center crop H, W = image.shape[:2] Hstart = (H - resized_res) // 2 Wstart = (W - resized_res) // 2 image = image[Hstart:Hstart + resized_res, Wstart:Wstart + resized_res] # resize if resolution is too large elif H > self.max_image_resolution or W > self.max_image_resolution: if H < W: Hnew, Wnew = int(self.max_image_resolution * H / W), self.max_image_resolution else: Hnew, Wnew = self.max_image_resolution, int(self.max_image_resolution * W / H) image = cv2.resize(image, (Wnew, Hnew)) image = (image * 2 - 1.) return image def _unnormalize_image(self, image: np.ndarray) -> np.ndarray: # (H, W, 3) from [-1, 1] to [0, 255] # NOTE: clip happens here image = (image + 1.) * 127.5 image = np.clip(image, 0, 255).astype(np.uint8) return image def reset(self) -> np.ndarray: # if ground truth physics simulator is provided, # return the the side-by-side concatenated image # get the initial prompt from the physics simulator if not yet set if not self.allow_external_prompt and self.gt_phys_sim is not None: image_prompt = np.tile( self.gt_phys_sim.reset(), (self.prompt_horizon, 1, 1, 1) ).astype(np.uint8) action_prompt = np.zeros( (self.prompt_horizon, self.action_stride, self.gt_phys_sim.action_dimension) ).astype(np.float32) else: assert self.init_prompt is not None, "Initial state is not set." image_prompt, action_prompt = self.init_prompt # standardize the image image_prompt = [self._unnormalize_image(self._normalize_image(frame)) for frame in image_prompt] current_image = image_prompt[-1] action_prompt = torch.from_numpy(action_prompt).to(device=self.device) self.cached_actions = action_prompt # convert to latent self.cached_latent_frames = torch.stack([ self._encode_image(frame) for frame in image_prompt ], axis=0) if self.resize_image: current_image = cv2.resize(current_image, (self.resize_image_resolution, self.resize_image_resolution)) if self.gt_phys_sim is not None: current_image = np.concatenate([current_image, current_image], axis=1) self.step_count = 0 return current_image def close(self): if self.gt_phys_sim is not None: try: self.gt_phys_sim.close() except NotImplementedError: pass @property def dt(self): return 1.0 / self.genie_frequency