Spaces:
Running
Running
Commit
·
57d44a7
1
Parent(s):
ba4725d
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import transformers
|
3 |
+
from transformers import AutoModelForTokenClassification, AutoTokenizer
|
4 |
+
import torch
|
5 |
+
|
6 |
+
# model large
|
7 |
+
model_name = "pucpr/clinicalnerpt-chemical"
|
8 |
+
model_large = AutoModelForTokenClassification.from_pretrained(model_name)
|
9 |
+
tokenizer_large = AutoTokenizer.from_pretrained(model_name)
|
10 |
+
|
11 |
+
# model base
|
12 |
+
model_name = "pucpr/clinicalnerpt-chemical"
|
13 |
+
model_base = AutoModelForTokenClassification.from_pretrained(model_name)
|
14 |
+
tokenizer_base = AutoTokenizer.from_pretrained(model_name)
|
15 |
+
|
16 |
+
# css
|
17 |
+
background_colors_entity_word = {
|
18 |
+
'ChemicalDrugs': "#fae8ff",
|
19 |
+
}
|
20 |
+
|
21 |
+
background_colors_entity_tag = {
|
22 |
+
'ChemicalDrugs': "#d946ef",
|
23 |
+
}
|
24 |
+
|
25 |
+
css = {
|
26 |
+
'entity_word': 'color:#000000;background: #xxxxxx; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 2.5; border-radius: 0.35em;',
|
27 |
+
'entity_tag': 'color:#fff;background: #xxxxxx; font-size: 0.8em; font-weight: bold; line-height: 2.5; border-radius: 0.35em; text-transform: uppercase; vertical-align: middle; margin-left: 0.5em;'
|
28 |
+
}
|
29 |
+
|
30 |
+
list_EN = "<span style='"
|
31 |
+
list_EN += f"{css['entity_tag'].replace('#xxxxxx',background_colors_entity_tag['ChemicalDrugs'])};padding:0.5em;"
|
32 |
+
list_EN += "'>ChemicalDrugs</span>"
|
33 |
+
|
34 |
+
# infos
|
35 |
+
title = "BioBERTpt - Chemical entities"
|
36 |
+
description = "BioBERTpt - Chemical entities"
|
37 |
+
allow_screenshot = False
|
38 |
+
allow_flagging = False
|
39 |
+
examples = [
|
40 |
+
["Dispneia venoso central em subclavia D duplolumen recebendo solução salina e glicosada em BI."],
|
41 |
+
["Paciente com Sepse pulmonar em D8 tazocin (paciente não recebeu por 2 dias Atb)."],
|
42 |
+
["FOI REALIZADO CURSO DE ATB COM LEVOFLOXACINA POR 7 DIAS."],
|
43 |
+
]
|
44 |
+
|
45 |
+
def ner(input_text):
|
46 |
+
|
47 |
+
num = 0
|
48 |
+
for tokenizer,model in zip([tokenizer_large,tokenizer_base],[model_large,model_base]):
|
49 |
+
|
50 |
+
# tokenization
|
51 |
+
inputs = tokenizer(input_text, max_length=512, truncation=True, return_tensors="pt")
|
52 |
+
tokens = inputs.tokens()
|
53 |
+
|
54 |
+
# get predictions
|
55 |
+
outputs = model(**inputs).logits
|
56 |
+
predictions = torch.argmax(outputs, dim=2)
|
57 |
+
preds = [model_base.config.id2label[prediction] for prediction in predictions[0].numpy()]
|
58 |
+
|
59 |
+
# variables
|
60 |
+
groups_pred = dict()
|
61 |
+
group_indices = list()
|
62 |
+
group_label = ''
|
63 |
+
pred_prec = ''
|
64 |
+
group_start = ''
|
65 |
+
count = 0
|
66 |
+
|
67 |
+
# group the NEs
|
68 |
+
for i,en in enumerate(preds):
|
69 |
+
|
70 |
+
if en == 'O':
|
71 |
+
|
72 |
+
if len(group_indices) > 0:
|
73 |
+
groups_pred[count] = {'indices':group_indices,'en':group_label}
|
74 |
+
group_indices = list()
|
75 |
+
group_label = ''
|
76 |
+
count += 1
|
77 |
+
|
78 |
+
if en.startswith('B'):
|
79 |
+
|
80 |
+
if len(group_indices) > 0:
|
81 |
+
groups_pred[count] = {'indices':group_indices,'en':group_label}
|
82 |
+
group_indices = list()
|
83 |
+
group_label = ''
|
84 |
+
count += 1
|
85 |
+
|
86 |
+
group_indices.append(i)
|
87 |
+
group_label = en.replace('B-','')
|
88 |
+
pred_prec = en
|
89 |
+
|
90 |
+
elif en.startswith('I'):
|
91 |
+
|
92 |
+
if len(group_indices) > 0:
|
93 |
+
if en.replace('I-','') == group_label:
|
94 |
+
group_indices.append(i)
|
95 |
+
else:
|
96 |
+
groups_pred[count] = {'indices':group_indices,'en':group_label}
|
97 |
+
group_indices = [i]
|
98 |
+
group_label = en.replace('I-','')
|
99 |
+
count += 1
|
100 |
+
else:
|
101 |
+
group_indices = [i]
|
102 |
+
group_label = en.replace('I-','')
|
103 |
+
|
104 |
+
if i == len(preds) - 1 and len(group_indices) > 0:
|
105 |
+
groups_pred[count] = {'indices':group_indices,'en':group_label}
|
106 |
+
group_indices = list()
|
107 |
+
group_label = ''
|
108 |
+
count += 1
|
109 |
+
|
110 |
+
# there is at least one NE
|
111 |
+
len_groups_pred = len(groups_pred)
|
112 |
+
inputs = inputs['input_ids'][0].numpy()#[1:-1]
|
113 |
+
if len_groups_pred > 0:
|
114 |
+
for pred_num in range(len_groups_pred):
|
115 |
+
en = groups_pred[pred_num]['en']
|
116 |
+
indices = groups_pred[pred_num]['indices']
|
117 |
+
if pred_num == 0:
|
118 |
+
if indices[0] > 0:
|
119 |
+
output = tokenizer.decode(inputs[:indices[0]]) + f'<span style="{css["entity_word"].replace("#xxxxxx",background_colors_entity_word[en])}">' + tokenizer.decode(inputs[indices[0]:indices[-1]+1]) + f'<span style="{css["entity_tag"].replace("#xxxxxx",background_colors_entity_tag[en])}">' + en + '</span></span> '
|
120 |
+
else:
|
121 |
+
output = f'<span style="{css["entity_word"].replace("#xxxxxx",background_colors_entity_word[en])}">' + tokenizer.decode(inputs[indices[0]:indices[-1]+1]) + f'<span style="{css["entity_tag"].replace("#xxxxxx",background_colors_entity_tag[en])}">' + en + '</span></span> '
|
122 |
+
else:
|
123 |
+
output += tokenizer.decode(inputs[indices_prev[-1]+1:indices[0]]) + f'<span style="{css["entity_word"].replace("#xxxxxx",background_colors_entity_word[en])}">' + tokenizer.decode(inputs[indices[0]:indices[-1]+1]) + f'<span style="{css["entity_tag"].replace("#xxxxxx",background_colors_entity_tag[en])}">' + en + '</span></span> '
|
124 |
+
indices_prev = indices
|
125 |
+
output += tokenizer.decode(inputs[indices_prev[-1]+1:])
|
126 |
+
else:
|
127 |
+
output = input_text
|
128 |
+
|
129 |
+
# output
|
130 |
+
output = output.replace('[CLS]','').replace(' [SEP]','').replace('##','')
|
131 |
+
output = "<div style='max-width:100%; max-height:360px; overflow:auto'>" + output + "</div>"
|
132 |
+
|
133 |
+
if num == 0:
|
134 |
+
output_large = output
|
135 |
+
num += 1
|
136 |
+
else: output_base = output
|
137 |
+
|
138 |
+
return output_large, output_base
|
139 |
+
|
140 |
+
# interface gradio
|
141 |
+
iface = gr.Interface(
|
142 |
+
title=title,
|
143 |
+
description=description,
|
144 |
+
article=article,
|
145 |
+
allow_screenshot=allow_screenshot,
|
146 |
+
allow_flagging=allow_flagging,
|
147 |
+
fn=ner,
|
148 |
+
inputs=gr.inputs.Textbox(placeholder="Digite uma frase aqui ou clique em um exemplo:", lines=5),
|
149 |
+
outputs=[gr.outputs.HTML(label="NER1"),gr.outputs.HTML(label="NER2")],
|
150 |
+
examples=examples
|
151 |
+
)
|
152 |
+
|
153 |
+
iface.launch()
|