test / app.py
liuhui0401's picture
Update app.py
1157ec3 verified
raw
history blame
3.07 kB
import gradio as gr
import cv2
from gradio_webrtc import WebRTC
import mediapipe as mp
import time
import os
if os.environ.get("SPACES_ZERO_GPU") is not None:
import spaces
else:
class spaces:
@staticmethod
def GPU(func):
def wrapper(*args, **kwargs):
return func(*args, **kwargs)
return wrapper
@spaces.GPU
def fake_gpu():
pass
# 初始化 MediaPipe Hands
mp_hands = mp.solutions.hands
mp_drawing = mp.solutions.drawing_utils
hands = mp_hands.Hands(min_detection_confidence=0.3, min_tracking_confidence=0.3) # 降低置信度提升速度
# WebRTC 配置
rtc_configuration = {
"iceServers": [{"urls": "stun:stun.l.google.com:19302"}],
"iceTransportPolicy": "relay"
}
# 控制每秒帧处理频率的时间
last_process_time = time.time()
# 手势检测函数
def detection(image, conf_threshold=0.5):
"""
使用 MediaPipe Hands 进行手势检测。
"""
global last_process_time
current_time = time.time()
# 只每隔一定时间(比如0.1秒)才进行一次处理,减少计算负担
if current_time - last_process_time < 0.1:
return image # 如果时间间隔太短,则直接返回原图像
last_process_time = current_time
# 将图像从 BGR 转换为 RGB(MediaPipe 需要 RGB 格式)
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# 将图像大小缩小到一个较小的尺寸,降低计算负担
image = cv2.resize(image, (640, 480))
# 使用 MediaPipe Hands 处理图像
results = hands.process(image_rgb)
# 如果检测到手,绘制手部关键点
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
mp_drawing.draw_landmarks(
image, hand_landmarks, mp_hands.HAND_CONNECTIONS
)
# 返回带注释的图像
return image
# Gradio 界面
css = """.my-group {max-width: 600px !important; max-height: 600 !important;}
.my-column {display: flex !important; justify-content: center !important; align-items: center !important;}"""
with gr.Blocks(css=css) as demo:
gr.HTML(
"""
<h1 style='text-align: center'>
Hand Gesture Detection with MediaPipe (Powered by WebRTC ⚡️)
</h1>
"""
)
gr.HTML(
"""
<h3 style='text-align: center'>
<a href='https://mediapipe.dev/'>MediaPipe Hands</a>
</h3>
"""
)
with gr.Column(elem_classes=["my-column"]):
with gr.Group(elem_classes=["my-group"]):
image = WebRTC(label="Stream", rtc_configuration=rtc_configuration)
conf_threshold = gr.Slider(
label="Confidence Threshold",
minimum=0.0,
maximum=1.0,
step=0.05,
value=0.5,
)
# 使用简化的stream函数,不使用queue参数
image.stream(fn=detection, inputs=[image, conf_threshold], outputs=[image], time_limit=10)
if __name__ == "__main__":
demo.launch()