liuhui0401 commited on
Commit
0cbe70e
·
verified ·
1 Parent(s): 343586f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +39 -35
app.py CHANGED
@@ -1,68 +1,72 @@
1
  import gradio as gr
2
  import cv2
3
- import mediapipe as mp
 
 
 
 
4
 
5
- # 初始化 MediaPipe Hands
6
- mp_hands = mp.solutions.hands
7
- mp_drawing = mp.solutions.drawing_utils
8
- hands = mp_hands.Hands(min_detection_confidence=0.3, min_tracking_confidence=0.3)
9
 
10
- # 手势检测函数
11
- def detection(image, conf_threshold=0.5):
12
- """
13
- 使用 MediaPipe Hands 进行手势检测。
14
- """
15
- # 将图像从 BGR 转换为 RGB(MediaPipe 需要 RGB 格式)
16
- image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
17
 
18
- # 将图像大小缩小到一个较小的尺寸,降低计算负担
19
- image = cv2.resize(image, (640, 480))
20
 
21
- # 使用 MediaPipe Hands 处理图像
22
- results = hands.process(image_rgb)
 
 
 
 
 
 
 
 
 
23
 
24
- # 如果检测到手,绘制手部关键点
25
- if results.multi_hand_landmarks:
26
- for hand_landmarks in results.multi_hand_landmarks:
27
- mp_drawing.draw_landmarks(
28
- image, hand_landmarks, mp_hands.HAND_CONNECTIONS
29
- )
30
 
31
- # 返回带注释的图像
32
- return image
 
 
 
33
 
34
- # Gradio 界面
35
  css = """.my-group {max-width: 600px !important; max-height: 600 !important;}
36
- .my-column {display: flex !important; justify-content: center !important; align-items: center !important;}"""
 
37
 
38
  with gr.Blocks(css=css) as demo:
39
  gr.HTML(
40
  """
41
- <h1 style='text-align: center'>
42
- Hand Gesture Detection with MediaPipe
43
- </h1>
44
- """
45
  )
46
  gr.HTML(
47
  """
48
  <h3 style='text-align: center'>
49
- <a href='https://mediapipe.dev/'>MediaPipe Hands</a>
50
  </h3>
51
  """
52
  )
53
  with gr.Column(elem_classes=["my-column"]):
54
  with gr.Group(elem_classes=["my-group"]):
55
- image = gr.Image(label="Upload Image") # 使用图像上传代替 WebRTC 流
56
  conf_threshold = gr.Slider(
57
  label="Confidence Threshold",
58
  minimum=0.0,
59
  maximum=1.0,
60
  step=0.05,
61
- value=0.5,
62
  )
63
 
64
- # 使用队列(queue=True)和时间限制来优化处理
65
- image.stream(fn=detection, inputs=[image, conf_threshold], outputs=[image], time_limit=10)
 
66
 
67
  if __name__ == "__main__":
68
  demo.launch()
 
1
  import gradio as gr
2
  import cv2
3
+ from huggingface_hub import hf_hub_download
4
+ from gradio_webrtc import WebRTC
5
+ from twilio.rest import Client
6
+ import os
7
+ from inference import YOLOv10
8
 
9
+ model_file = hf_hub_download(
10
+ repo_id="onnx-community/yolov10n", filename="onnx/model.onnx"
11
+ )
 
12
 
13
+ model = YOLOv10(model_file)
 
 
 
 
 
 
14
 
15
+ account_sid = os.environ.get("TWILIO_ACCOUNT_SID")
16
+ auth_token = os.environ.get("TWILIO_AUTH_TOKEN")
17
 
18
+ if account_sid and auth_token:
19
+ client = Client(account_sid, auth_token)
20
+
21
+ token = client.tokens.create()
22
+
23
+ rtc_configuration = {
24
+ "iceServers": token.ice_servers,
25
+ "iceTransportPolicy": "relay",
26
+ }
27
+ else:
28
+ rtc_configuration = None
29
 
 
 
 
 
 
 
30
 
31
+ def detection(image, conf_threshold=0.3):
32
+ image = cv2.resize(image, (model.input_width, model.input_height))
33
+ new_image = model.detect_objects(image, conf_threshold)
34
+ return cv2.resize(new_image, (500, 500))
35
+
36
 
 
37
  css = """.my-group {max-width: 600px !important; max-height: 600 !important;}
38
+ .my-column {display: flex !important; justify-content: center !important; align-items: center !important};"""
39
+
40
 
41
  with gr.Blocks(css=css) as demo:
42
  gr.HTML(
43
  """
44
+ <h1 style='text-align: center'>
45
+ YOLOv10 Webcam Stream (Powered by WebRTC ⚡️)
46
+ </h1>
47
+ """
48
  )
49
  gr.HTML(
50
  """
51
  <h3 style='text-align: center'>
52
+ <a href='https://arxiv.org/abs/2405.14458' target='_blank'>arXiv</a> | <a href='https://github.com/THU-MIG/yolov10' target='_blank'>github</a>
53
  </h3>
54
  """
55
  )
56
  with gr.Column(elem_classes=["my-column"]):
57
  with gr.Group(elem_classes=["my-group"]):
58
+ image = WebRTC(label="Stream", rtc_configuration=rtc_configuration)
59
  conf_threshold = gr.Slider(
60
  label="Confidence Threshold",
61
  minimum=0.0,
62
  maximum=1.0,
63
  step=0.05,
64
+ value=0.30,
65
  )
66
 
67
+ image.stream(
68
+ fn=detection, inputs=[image, conf_threshold], outputs=[image], time_limit=10
69
+ )
70
 
71
  if __name__ == "__main__":
72
  demo.launch()