Spaces:
Running
Running
liujch1998
commited on
Commit
Β·
d8d9fba
1
Parent(s):
f2d5dd5
Copy files from dev
Browse files- README.md +6 -5
- app.py +243 -0
- requirements.txt +6 -0
README.md
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: infini-gram
|
3 |
+
emoji: π
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: green
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.15.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: mit
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import requests
|
5 |
+
|
6 |
+
CORPUS_BY_DESC = {
|
7 |
+
'RedPajama (LLaMA tokenizer)': 'rpj_v3_c4_llama2',
|
8 |
+
'Pile-val (GPT-2 tokenizer)': 'pile_v3_val',
|
9 |
+
}
|
10 |
+
CORPUS_DESCS = list(CORPUS_BY_DESC.keys())
|
11 |
+
QUERY_TYPE_BY_DESC = {
|
12 |
+
'1. Count an n-gram': 'count',
|
13 |
+
'2. Compute the probability of the last token in an n-gram': 'compute_prob',
|
14 |
+
'3. Compute the next-token distribution of an (n-1)-gram': 'get_next_token_distribution_approx',
|
15 |
+
'4. Compute the β-gram probability of the last token': 'compute_infgram_prob',
|
16 |
+
'5. Compute the β-gram next-token distribution': 'get_infgram_next_token_distribution_approx',
|
17 |
+
'6. Searching for document containing n-gram(s)': 'get_a_random_document_from_cnf_query_fast_approx',
|
18 |
+
# '7. Analyze an (AI-generated) document using β-gram': 'analyze_document',
|
19 |
+
}
|
20 |
+
QUERY_DESC_BY_TYPE = {v: k for k, v in QUERY_TYPE_BY_DESC.items()}
|
21 |
+
QUERY_DESCS = list(QUERY_TYPE_BY_DESC.keys())
|
22 |
+
|
23 |
+
MAX_QUERY_CHARS = 1000
|
24 |
+
MAX_INPUT_DOC_TOKENS = 1000
|
25 |
+
MAX_OUTPUT_DOC_TOKENS = 5000 # must be an even number!
|
26 |
+
MAX_CNT_FOR_NTD = 1000
|
27 |
+
MAX_CLAUSE_FREQ = 10000
|
28 |
+
MAX_CLAUSE_FREQ_FAST = 1000000
|
29 |
+
MAX_CLAUSE_FREQ_FAST_APPROX_PER_SHARD = 50000
|
30 |
+
MAX_DIFF_TOKENS = 100
|
31 |
+
MAX_DIFF_BYTES = 2 * MAX_DIFF_TOKENS
|
32 |
+
MAX_CLAUSES_IN_CNF = 4
|
33 |
+
MAX_TERMS_IN_DISJ_CLAUSE = 4
|
34 |
+
|
35 |
+
API_IPADDR = os.environ.get('API_IPADDR', None)
|
36 |
+
default_concurrency_limit = os.environ.get('default_concurrency_limit', 10)
|
37 |
+
max_size = os.environ.get('max_size', 100)
|
38 |
+
max_threads = os.environ.get('max_threads', 40)
|
39 |
+
debug = os.environ.get('debug', False)
|
40 |
+
|
41 |
+
def process(corpus_desc, query_desc, query):
|
42 |
+
corpus = CORPUS_BY_DESC[corpus_desc]
|
43 |
+
query_type = QUERY_TYPE_BY_DESC[query_desc]
|
44 |
+
print(json.dumps({'corpus': corpus, 'query_type': query_type, 'query': query}))
|
45 |
+
data = {
|
46 |
+
'corpus': corpus,
|
47 |
+
'query_type': query_type,
|
48 |
+
'query': query,
|
49 |
+
}
|
50 |
+
if API_IPADDR is None:
|
51 |
+
raise ValueError(f'API_IPADDR envvar is not set!')
|
52 |
+
response = requests.post(f'http://{API_IPADDR}:5000/', json=data)
|
53 |
+
if response.status_code == 200:
|
54 |
+
result = response.json()
|
55 |
+
else:
|
56 |
+
raise ValueError(f'Invalid response: {response.status_code}')
|
57 |
+
# print(result)
|
58 |
+
return result
|
59 |
+
|
60 |
+
with gr.Blocks() as demo:
|
61 |
+
with gr.Column():
|
62 |
+
gr.HTML(
|
63 |
+
'''<h1 text-align="center">Infini-gram: An Engine for n-gram / β-gram Language Models with Trillion-Token Corpora</h1>
|
64 |
+
|
65 |
+
<p style='font-size: 16px;'>This is an engine that processes n-gram / β-gram queries on a text corpus. Please first select the corpus and the type of query, then enter your query and submit.</p>
|
66 |
+
'''
|
67 |
+
)
|
68 |
+
with gr.Row():
|
69 |
+
with gr.Column(scale=1):
|
70 |
+
corpus_desc = gr.Radio(choices=CORPUS_DESCS, label='Corpus', value=CORPUS_DESCS[0])
|
71 |
+
with gr.Column(scale=4):
|
72 |
+
query_desc = gr.Radio(
|
73 |
+
choices=QUERY_DESCS, label='Query Type', value=QUERY_DESCS[0],
|
74 |
+
)
|
75 |
+
|
76 |
+
with gr.Row(visible=True) as row_1:
|
77 |
+
with gr.Column():
|
78 |
+
gr.HTML('<h2>1. Count an n-gram</h2>')
|
79 |
+
gr.HTML('<p style="font-size: 16px;">This counts the number of times an n-gram appears in the corpus. If you submit an empty input, it will return the total number of tokens in the corpus.</p>')
|
80 |
+
gr.HTML('<p style="font-size: 16px;">Example query: <b>natural language processing</b> (the output is Cnt(natural language processing))</p>')
|
81 |
+
with gr.Row():
|
82 |
+
with gr.Column(scale=1):
|
83 |
+
count_input = gr.Textbox(placeholder='Enter a string (an n-gram) here', label='Query', interactive=True)
|
84 |
+
with gr.Row():
|
85 |
+
count_clear = gr.ClearButton(value='Clear', variant='secondary', visible=True)
|
86 |
+
count_submit = gr.Button(value='Submit', variant='primary', visible=True)
|
87 |
+
count_output_tokens = gr.Textbox(label='Tokenized', lines=2, interactive=False)
|
88 |
+
with gr.Column(scale=1):
|
89 |
+
count_output = gr.Label(label='Count', num_top_classes=0)
|
90 |
+
|
91 |
+
with gr.Row(visible=False) as row_2:
|
92 |
+
with gr.Column():
|
93 |
+
gr.HTML('<h2>2. Compute the probability of the last token in an n-gram</h2>')
|
94 |
+
gr.HTML('<p style="font-size: 16px;">This computes the n-gram probability of the last token conditioned on the previous tokens (i.e. (n-1)-gram)).</p>')
|
95 |
+
gr.HTML('<p style="font-size: 16px;">Example query: <b>natural language processing</b> (the output is P(processing | natural language), by counting the appearance of the 3-gram "natural language processing" and the 2-gram "natural language", and take the division between the two)</p>')
|
96 |
+
gr.HTML('<p style="font-size: 16px;">Note: The (n-1)-gram needs to exist in the corpus. If the (n-1)-gram is not found in the corpus, an error message will appear.</p>')
|
97 |
+
with gr.Row():
|
98 |
+
with gr.Column(scale=1):
|
99 |
+
ngram_input = gr.Textbox(placeholder='Enter a string (an n-gram) here', label='Query', interactive=True)
|
100 |
+
with gr.Row():
|
101 |
+
ngram_clear = gr.ClearButton(value='Clear', variant='secondary', visible=True)
|
102 |
+
ngram_submit = gr.Button(value='Submit', variant='primary', visible=True)
|
103 |
+
ngram_output_tokens = gr.Textbox(label='Tokenized', lines=2, interactive=False)
|
104 |
+
with gr.Column(scale=1):
|
105 |
+
ngram_output = gr.Label(label='Probability', num_top_classes=0)
|
106 |
+
|
107 |
+
with gr.Row(visible=False) as row_3:
|
108 |
+
with gr.Column():
|
109 |
+
gr.HTML('<h2>3. Compute the next-token distribution of an (n-1)-gram</h2>')
|
110 |
+
gr.HTML('<p style="font-size: 16px;">This is an extension of the Query 2: It interprets your input as the (n-1)-gram and gives you the full next-token distribution.</p>')
|
111 |
+
gr.HTML('<p style="font-size: 16px;">Example query: <b>natural language</b> (the output is P(* | natural language), for the top-10 tokens *)</p>')
|
112 |
+
gr.HTML(f'<p style="font-size: 16px;">Note: The (n-1)-gram needs to exist in the corpus. If the (n-1)-gram is not found in the corpus, an error message will appear. If the (n-1)-gram appears more than {MAX_CNT_FOR_NTD} times in the corpus, the result will be approximate.</p>')
|
113 |
+
with gr.Row():
|
114 |
+
with gr.Column(scale=1):
|
115 |
+
a_ntd_input = gr.Textbox(placeholder='Enter a string (an (n-1)-gram) here', label='Query', interactive=True)
|
116 |
+
with gr.Row():
|
117 |
+
a_ntd_clear = gr.ClearButton(value='Clear', variant='secondary', visible=True)
|
118 |
+
a_ntd_submit = gr.Button(value='Submit', variant='primary', visible=True)
|
119 |
+
a_ntd_output_tokens = gr.Textbox(label='Tokenized', lines=2, interactive=False)
|
120 |
+
with gr.Column(scale=1):
|
121 |
+
a_ntd_output = gr.Label(label='Distribution', num_top_classes=10)
|
122 |
+
|
123 |
+
with gr.Row(visible=False) as row_4:
|
124 |
+
with gr.Column():
|
125 |
+
gr.HTML('<h2>4. Compute the β-gram probability of the last token</h2>')
|
126 |
+
gr.HTML('<p style="font-size: 16px;">This computes the β-gram probability of the last token conditioned on the previous tokens. Compared to Query 2 (which uses your entire input for n-gram modeling), here we take the longest suffix that we can find in the corpus.</p>')
|
127 |
+
gr.HTML('<p style="font-size: 16px;">Example query: <b>I love natural language processing</b> (the output is P(processing | natural language), because "natural language" appears in the corpus but "love natural language" doesn\'t; in this case the effective n = 3)</p>')
|
128 |
+
gr.HTML('<p style="font-size: 16px;">Note: It may be possible that the effective n = 1, in which case it reduces to the uni-gram probability of the last token.</p>')
|
129 |
+
with gr.Row():
|
130 |
+
with gr.Column(scale=1):
|
131 |
+
infgram_input = gr.Textbox(placeholder='Enter a string here', label='Query', interactive=True)
|
132 |
+
with gr.Row():
|
133 |
+
infgram_clear = gr.ClearButton(value='Clear', variant='secondary', visible=True)
|
134 |
+
infgram_submit = gr.Button(value='Submit', variant='primary', visible=True)
|
135 |
+
infgram_output_tokens = gr.Textbox(label='Tokenized', lines=2, interactive=False)
|
136 |
+
infgram_longest_suffix = gr.Textbox(label='Longest Found Suffix', interactive=False)
|
137 |
+
with gr.Column(scale=1):
|
138 |
+
infgram_output = gr.Label(label='Probability', num_top_classes=0)
|
139 |
+
|
140 |
+
with gr.Row(visible=False) as row_5:
|
141 |
+
with gr.Column():
|
142 |
+
gr.HTML('<h2>5. Compute the β-gram next-token distribution</h2>')
|
143 |
+
gr.HTML('<p style="font-size: 16px;">This is similar to Query 3, but with β-gram instead of n-gram.</p>')
|
144 |
+
gr.HTML('<p style="font-size: 16px;">Example query: <b>I love natural language</b> (the output is P(* | natural language), for the top-10 tokens *)</p>')
|
145 |
+
with gr.Row():
|
146 |
+
with gr.Column(scale=1):
|
147 |
+
a_infntd_input = gr.Textbox(placeholder='Enter a string here', label='Query', interactive=True)
|
148 |
+
with gr.Row():
|
149 |
+
a_infntd_clear = gr.ClearButton(value='Clear', variant='secondary', visible=True)
|
150 |
+
a_infntd_submit = gr.Button(value='Submit', variant='primary', visible=True)
|
151 |
+
a_infntd_output_tokens = gr.Textbox(label='Tokenized', lines=2, interactive=False)
|
152 |
+
a_infntd_longest_suffix = gr.Textbox(label='Longest Found Suffix', interactive=False)
|
153 |
+
with gr.Column(scale=1):
|
154 |
+
a_infntd_output = gr.Label(label='Distribution', num_top_classes=10)
|
155 |
+
|
156 |
+
with gr.Row(visible=False) as row_6:
|
157 |
+
with gr.Column():
|
158 |
+
gr.HTML(f'''<h2>6. Searching for document containing n-gram(s)</h2>
|
159 |
+
<p style="font-size: 16px;">This displays a random document in the corpus that satisfies your query. You can simply enter an n-gram, in which case the document displayed would contain your n-gram. You can also connect multiple n-gram terms with the AND/OR operators, in the <a href="https://en.wikipedia.org/wiki/Conjunctive_normal_form">CNF format</a>, in which case the displayed document contains n-grams such that it satisfies this logical constraint.</p>
|
160 |
+
<p style="font-size: 16px;">Example queries:</p>
|
161 |
+
<ul style="font-size: 16px;">
|
162 |
+
<li><b>natural language processing</b> (the displayed document would contain "natural language processing")</li>
|
163 |
+
<li><b>natural language processing AND deep learning</b> (the displayed document would contain both "natural language processing" and "deep learning")</li>
|
164 |
+
<li><b>natural language processing OR artificial intelligence AND deep learning OR machine learning</b> (the displayed document would contain at least one of "natural language processing" / "artificial intelligence", and also at least one of "deep learning" / "machine learning")</li>
|
165 |
+
</ul>
|
166 |
+
<p style="font-size: 16px;">If you want another random document, simply hit the Submit button again :)</p>
|
167 |
+
<p style="font-size: 16px;">A few notes:</p>
|
168 |
+
<ul style="font-size: 16px;">
|
169 |
+
<li>When you write a query in CNF, note that <b>OR has higher precedence than AND</b> (which is contrary to conventions in boolean algebra).</li>
|
170 |
+
<li>If the document is too long, it will be truncated to {MAX_OUTPUT_DOC_TOKENS} tokens.</li>
|
171 |
+
<li>We can only include documents where all terms (or clauses) are separated by no more than {MAX_DIFF_TOKENS} tokens.</li>
|
172 |
+
<li>If you query for two or more clauses, and a clause has more than {MAX_CLAUSE_FREQ_FAST_APPROX_PER_SHARD} matches (per shard), we will search within a random subset of all documents containing that clause.</li>
|
173 |
+
<li>The number of found documents may contain duplicates (e.g., if a document contains your query term twice, it may be counted twice).</li>
|
174 |
+
</ul>
|
175 |
+
''')
|
176 |
+
with gr.Row():
|
177 |
+
with gr.Column(scale=1):
|
178 |
+
a_ard_cnf_input = gr.Textbox(placeholder='Enter a query here', label='Query', interactive=True)
|
179 |
+
with gr.Row():
|
180 |
+
a_ard_cnf_clear = gr.ClearButton(value='Clear', variant='secondary', visible=True)
|
181 |
+
a_ard_cnf_submit = gr.Button(value='Submit', variant='primary', visible=True)
|
182 |
+
a_ard_cnf_output_tokens = gr.Textbox(label='Tokenized', lines=2, interactive=False)
|
183 |
+
with gr.Column(scale=1):
|
184 |
+
a_ard_cnf_output_message = gr.Label(label='Message', num_top_classes=0)
|
185 |
+
a_ard_cnf_output = gr.HighlightedText(label='Document', show_legend=False, color_map={"-": "red", "0": "green", "1": "cyan", "2": "blue", "3": "magenta"})
|
186 |
+
|
187 |
+
with gr.Row(visible=False) as row_7:
|
188 |
+
with gr.Column():
|
189 |
+
gr.HTML('<h2>7. Analyze an (AI-generated) document using β-gram</h2>')
|
190 |
+
gr.HTML('<p style="font-size: 16px;">This analyzes the document you entered using the β-gram. Each token is highlighted where (1) the color represents its β-gram probability (red is 0.0, blue is 1.0), and (2) the alpha represents the effective n (higher alpha means higher n).</p>')
|
191 |
+
gr.HTML('<p style="font-size: 16px;">If you hover over a token, the tokens preceding it are each highlighted where (1) the color represents the n-gram probability of your selected token, with the n-gram starting from that highlighted token (red is 0.0, blue is 1.0), and (2) the alpha represents the count of the (n-1)-gram starting from that highlighted token (and up to but excluding your selected token) (higher alpha means higher count).</p>')
|
192 |
+
with gr.Row():
|
193 |
+
with gr.Column(scale=1):
|
194 |
+
doc_analysis_input = gr.Textbox(placeholder='Enter a document here', label='Query', interactive=True, lines=10)
|
195 |
+
with gr.Row():
|
196 |
+
doc_analysis_clear = gr.ClearButton(value='Clear', variant='secondary', visible=True)
|
197 |
+
doc_analysis_submit = gr.Button(value='Submit', variant='primary', visible=True)
|
198 |
+
with gr.Column(scale=1):
|
199 |
+
doc_analysis_output = gr.HTML(value='', label='Analysis')
|
200 |
+
|
201 |
+
count_clear.add([count_input, count_output, count_output_tokens])
|
202 |
+
ngram_clear.add([ngram_input, ngram_output, ngram_output_tokens])
|
203 |
+
a_ntd_clear.add([a_ntd_input, a_ntd_output, a_ntd_output_tokens])
|
204 |
+
infgram_clear.add([infgram_input, infgram_output, infgram_output_tokens])
|
205 |
+
a_infntd_clear.add([a_infntd_input, a_infntd_output, a_infntd_output_tokens, a_infntd_longest_suffix])
|
206 |
+
a_ard_cnf_clear.add([a_ard_cnf_input, a_ard_cnf_output, a_ard_cnf_output_tokens, a_ard_cnf_output_message])
|
207 |
+
doc_analysis_clear.add([doc_analysis_input, doc_analysis_output])
|
208 |
+
|
209 |
+
count_submit.click(process, inputs=[corpus_desc, query_desc, count_input], outputs=[count_output, count_output_tokens])
|
210 |
+
ngram_submit.click(process, inputs=[corpus_desc, query_desc, ngram_input], outputs=[ngram_output, ngram_output_tokens])
|
211 |
+
a_ntd_submit.click(process, inputs=[corpus_desc, query_desc, a_ntd_input], outputs=[a_ntd_output, a_ntd_output_tokens])
|
212 |
+
infgram_submit.click(process, inputs=[corpus_desc, query_desc, infgram_input], outputs=[infgram_output, infgram_output_tokens, infgram_longest_suffix])
|
213 |
+
a_infntd_submit.click(process, inputs=[corpus_desc, query_desc, a_infntd_input], outputs=[a_infntd_output, a_infntd_output_tokens, a_infntd_longest_suffix])
|
214 |
+
a_ard_cnf_submit.click(process, inputs=[corpus_desc, query_desc, a_ard_cnf_input], outputs=[a_ard_cnf_output, a_ard_cnf_output_tokens, a_ard_cnf_output_message])
|
215 |
+
doc_analysis_submit.click(process, inputs=[corpus_desc, query_desc, doc_analysis_input], outputs=[doc_analysis_output])
|
216 |
+
|
217 |
+
def update_query_desc(selection):
|
218 |
+
return {
|
219 |
+
row_1: gr.Row(visible=(selection == QUERY_DESC_BY_TYPE['count'])),
|
220 |
+
row_2: gr.Row(visible=(selection == QUERY_DESC_BY_TYPE['compute_prob'])),
|
221 |
+
row_3: gr.Row(visible=(selection == QUERY_DESC_BY_TYPE['get_next_token_distribution_approx'])),
|
222 |
+
row_4: gr.Row(visible=(selection == QUERY_DESC_BY_TYPE['compute_infgram_prob'])),
|
223 |
+
row_5: gr.Row(visible=(selection == QUERY_DESC_BY_TYPE['get_infgram_next_token_distribution_approx'])),
|
224 |
+
row_6: gr.Row(visible=(selection == QUERY_DESC_BY_TYPE['get_a_random_document_from_cnf_query_fast_approx'])),
|
225 |
+
# row_7: gr.Row(visible=(selection == QUERY_DESC_BY_TYPE['analyze_document'])),
|
226 |
+
}
|
227 |
+
query_desc.change(fn=update_query_desc, inputs=query_desc, outputs=[
|
228 |
+
row_1,
|
229 |
+
row_2,
|
230 |
+
row_3,
|
231 |
+
row_4,
|
232 |
+
row_5,
|
233 |
+
row_6,
|
234 |
+
# row_7,
|
235 |
+
])
|
236 |
+
|
237 |
+
demo.queue(
|
238 |
+
default_concurrency_limit=default_concurrency_limit,
|
239 |
+
max_size=max_size,
|
240 |
+
).launch(
|
241 |
+
max_threads=max_threads,
|
242 |
+
debug=debug,
|
243 |
+
)
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==1.13.1
|
2 |
+
transformers==4.31.0
|
3 |
+
tokenizers==0.13.3
|
4 |
+
sentencepiece==0.1.96
|
5 |
+
huggingface_hub==0.14.1
|
6 |
+
requests
|