File size: 2,706 Bytes
c942159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
from flask import Flask, render_template, redirect, request, jsonify, make_response
import datetime

import torch
import transformers

device = torch.device('cuda')

MODEL_NAME = 'liujch1998/vera'

class Interactive:
    def __init__(self):
        self.tokenizer = transformers.AutoTokenizer.from_pretrained(MODEL_NAME)
        self.model = transformers.T5EncoderModel.from_pretrained(MODEL_NAME, low_cpu_mem_usage=True, device_map='auto', torch_dtype='auto', offload_folder='offload')
        self.model.D = self.model.shared.embedding_dim
        self.linear = torch.nn.Linear(self.model.D, 1, dtype=self.model.dtype).to(device)
        self.linear.weight = torch.nn.Parameter(self.model.shared.weight[32099, :].unsqueeze(0)) # (1, D)
        self.linear.bias = torch.nn.Parameter(self.model.shared.weight[32098, 0].unsqueeze(0)) # (1)
        self.model.eval()
        self.t = self.model.shared.weight[32097, 0].item()

    def run(self, statement):
        input_ids = self.tokenizer.batch_encode_plus([statement], return_tensors='pt', padding='longest', truncation='longest_first', max_length=128).input_ids.to(device)
        with torch.no_grad():
            output = self.model(input_ids)
            last_hidden_state = output.last_hidden_state.to(device) # (B=1, L, D)
            hidden = last_hidden_state[0, -1, :] # (D)
            logit = self.linear(hidden).squeeze(-1) # ()
            logit_calibrated = logit / self.t
            score = logit.sigmoid()
            score_calibrated = logit_calibrated.sigmoid()
        return {
            'timestamp': datetime.datetime.now().strftime('%Y%m%d-%H%M%S'),
            'statement': statement,
            'logit': logit.item(),
            'logit_calibrated': logit_calibrated.item(),
            'score': score.item(),
            'score_calibrated': score_calibrated.item(),
        }

interactive = Interactive()
app = Flask(__name__)

@app.route('/', methods=['GET', 'POST'])
def main():
    try:
        print(request)
        data = request.get_json()
        statement = data.get('statement')
    except Exception as e:
        return jsonify({
            'success': False,
            'message': 'Please provide a statement.',
        }), 400
    try:
        result = interactive.run(statement)
    except Exception as e:
        return jsonify({
            'success': False,
            'message': 'Internal error.',
        }), 500
    return jsonify(result)

if __name__ == "__main__":
    app.run(host="0.0.0.0", port=8372, threaded=True, ssl_context=('/etc/letsencrypt/live/qa.cs.washington.edu/fullchain.pem', '/etc/letsencrypt/live/qa.cs.washington.edu/privkey.pem'))
    # 8372 is when you type Vera on a phone keypad