|
from deepspeech import Model |
|
import gradio as gr |
|
import numpy as np |
|
import urllib.request |
|
|
|
model_file_path = "deepspeech-0.9.3-models.pbmm" |
|
lm_file_path = "deepspeech-0.9.3-models.scorer" |
|
url = "https://github.com/mozilla/DeepSpeech/releases/download/v0.9.3/" |
|
|
|
urllib.request.urlretrieve(url + model_file_path, filename=model_file_path) |
|
urllib.request.urlretrieve(url + lm_file_path, filename=lm_file_path) |
|
|
|
beam_width = 100 |
|
lm_alpha = 0.93 |
|
lm_beta = 1.18 |
|
|
|
model = Model(model_file_path) |
|
model.enableExternalScorer(lm_file_path) |
|
model.setScorerAlphaBeta(lm_alpha, lm_beta) |
|
model.setBeamWidth(beam_width) |
|
|
|
|
|
def reformat_freq(sr, y): |
|
if sr not in ( |
|
48000, |
|
16000, |
|
): |
|
raise ValueError("Unsupported rate", sr) |
|
if sr == 48000: |
|
y = ( |
|
((y / max(np.max(y), 1)) * 32767) |
|
.reshape((-1, 3)) |
|
.mean(axis=1) |
|
.astype("int16") |
|
) |
|
sr = 16000 |
|
return sr, y |
|
|
|
|
|
def transcribe(audio_file): |
|
|
|
text = model(audio_file) |
|
return text |
|
|
|
|
|
demo = gr.Interface( |
|
transcribe, |
|
|
|
gr.Audio(label="Upload Audio File", source="upload", type="filepath") |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |