r"""Weight Normalization from https://arxiv.org/abs/1602.07868.""" from torch.nn.parameter import Parameter, UninitializedParameter from torch import norm_except_dim from typing import Any, TypeVar import warnings from torch.nn.modules import Module import torch class WeightNorm: name: str dim: int def __init__(self, name: str, dim: int) -> None: if dim is None: dim = -1 self.name = name self.dim = dim # TODO Make return type more specific def compute_weight(self, module: Module) -> Any: g = getattr(module, self.name + '_g') v = getattr(module, self.name + '_v') input_dtype = v.dtype v = v.to(torch.float32) reduce_dims = list(range(v.dim())) reduce_dims.pop(self.dim) variance = v.pow(2).sum(reduce_dims, keepdim=True) v = v * torch.rsqrt(variance + 1e-6) return g * v.to(input_dtype) @staticmethod def apply(module, name: str, dim: int) -> 'WeightNorm': warnings.warn("torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm.") for hook in module._forward_pre_hooks.values(): if isinstance(hook, WeightNorm) and hook.name == name: raise RuntimeError(f"Cannot register two weight_norm hooks on the same parameter {name}") if dim is None: dim = -1 fn = WeightNorm(name, dim) weight = getattr(module, name) if isinstance(weight, UninitializedParameter): raise ValueError( 'The module passed to `WeightNorm` can\'t have uninitialized parameters. ' 'Make sure to run the dummy forward before applying weight normalization') # remove w from parameter list del module._parameters[name] # add g and v as new parameters and express w as g/||v|| * v module.register_parameter(name + '_g', Parameter(norm_except_dim(weight, 2, dim).data)) module.register_parameter(name + '_v', Parameter(weight.data)) setattr(module, name, fn.compute_weight(module)) # recompute weight before every forward() module.register_forward_pre_hook(fn) return fn def remove(self, module: Module) -> None: weight = self.compute_weight(module) delattr(module, self.name) del module._parameters[self.name + '_g'] del module._parameters[self.name + '_v'] setattr(module, self.name, Parameter(weight.data)) def __call__(self, module: Module, inputs: Any) -> None: setattr(module, self.name, self.compute_weight(module)) T_module = TypeVar('T_module', bound=Module) def weight_norm(module: T_module, name: str = 'weight', dim: int = 0) -> T_module: r"""Apply weight normalization to a parameter in the given module. .. math:: \mathbf{w} = g \dfrac{\mathbf{v}}{\|\mathbf{v}\|} Weight normalization is a reparameterization that decouples the magnitude of a weight tensor from its direction. This replaces the parameter specified by :attr:`name` (e.g. ``'weight'``) with two parameters: one specifying the magnitude (e.g. ``'weight_g'``) and one specifying the direction (e.g. ``'weight_v'``). Weight normalization is implemented via a hook that recomputes the weight tensor from the magnitude and direction before every :meth:`~Module.forward` call. By default, with ``dim=0``, the norm is computed independently per output channel/plane. To compute a norm over the entire weight tensor, use ``dim=None``. See https://arxiv.org/abs/1602.07868 .. warning:: This function is deprecated. Use :func:`torch.nn.utils.parametrizations.weight_norm` which uses the modern parametrization API. The new ``weight_norm`` is compatible with ``state_dict`` generated from old ``weight_norm``. Migration guide: * The magnitude (``weight_g``) and direction (``weight_v``) are now expressed as ``parametrizations.weight.original0`` and ``parametrizations.weight.original1`` respectively. If this is bothering you, please comment on https://github.com/pytorch/pytorch/issues/102999 * To remove the weight normalization reparametrization, use :func:`torch.nn.utils.parametrize.remove_parametrizations`. * The weight is no longer recomputed once at module forward; instead, it will be recomputed on every access. To restore the old behavior, use :func:`torch.nn.utils.parametrize.cached` before invoking the module in question. Args: module (Module): containing module name (str, optional): name of weight parameter dim (int, optional): dimension over which to compute the norm Returns: The original module with the weight norm hook Example:: >>> m = weight_norm(nn.Linear(20, 40), name='weight') >>> m Linear(in_features=20, out_features=40, bias=True) >>> m.weight_g.size() torch.Size([40, 1]) >>> m.weight_v.size() torch.Size([40, 20]) """ WeightNorm.apply(module, name, dim) return module