import os import torch import torch.nn as nn from transformers import ( CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig, SiglipVisionModel, SiglipImageProcessor, SiglipVisionConfig ) from .beats.BEATs import BEATsConfig, BEATs class CLIPVisionTower(nn.Module): def __init__(self, vision_tower, args, delay_load=False): super().__init__() self.is_loaded = False self.vision_tower_name = vision_tower self.select_layer = args.mm_vision_select_layer self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch') if not delay_load: self.load_model() else: self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_tower_name) def load_model(self): self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name) self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name) self.vision_tower.requires_grad_(False) self.is_loaded = True def feature_select(self, image_forward_outs): image_features = image_forward_outs.hidden_states[self.select_layer] if self.select_feature == 'patch': image_features = image_features[:, 1:] elif self.select_feature == 'cls_patch': image_features = image_features else: raise ValueError(f'Unexpected select feature: {self.select_feature}') return image_features @torch.no_grad() def forward(self, images): if type(images) is list: image_features = [] for image in images: image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True) image_feature = self.feature_select(image_forward_out).to(image.dtype) image_features.append(image_feature) else: image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True) image_features = self.feature_select(image_forward_outs).to(images.dtype) return image_features @property def dummy_feature(self): return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) @property def dtype(self): return self.vision_tower.dtype @property def device(self): return self.vision_tower.device @property def config(self): if self.is_loaded: return self.vision_tower.config else: return self.cfg_only @property def hidden_size(self): return self.config.hidden_size @property def num_patches(self): return (self.config.image_size // self.config.patch_size) ** 2 @property def num_patches_per_side(self): return self.config.image_size // self.config.patch_size @property def image_size(self): return self.config.image_size class SiglipVisionTower(nn.Module): def __init__(self, vision_tower, args, delay_load=False): super().__init__() self.is_loaded = False self.vision_tower_name = vision_tower self.select_layer = args.mm_vision_select_layer self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch') if not delay_load: self.load_model() else: self.cfg_only = SiglipVisionConfig.from_pretrained(self.vision_tower_name) def load_model(self): self.image_processor = SiglipImageProcessor.from_pretrained(self.vision_tower_name) self.vision_tower = SiglipVisionModel.from_pretrained(self.vision_tower_name) self.vision_tower.requires_grad_(False) self.is_loaded = True def feature_select(self, image_forward_outs): image_features = image_forward_outs.hidden_states[self.select_layer] if self.select_feature == 'patch': image_features = image_features else: raise ValueError(f'Unexpected select feature: {self.select_feature}') return image_features @torch.no_grad() def forward(self, images): if type(images) is list: image_features = [] for image in images: image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True) image_feature = self.feature_select(image_forward_out).to(image.dtype) image_features.append(image_feature) else: image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True) image_features = self.feature_select(image_forward_outs).to(images.dtype) return image_features @property def dummy_feature(self): return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) @property def dtype(self): return self.vision_tower.dtype @property def device(self): return self.vision_tower.device @property def config(self): if self.is_loaded: return self.vision_tower.config else: return self.cfg_only @property def hidden_size(self): return self.config.hidden_size @property def num_patches(self): return (self.config.image_size // self.config.patch_size) ** 2 @property def num_patches_per_side(self): return self.config.image_size // self.config.patch_size @property def image_size(self): return self.config.image_size def build_vision_tower(vision_tower_cfg, **kwargs): vision_tower = getattr(vision_tower_cfg, 'mm_vision_tower', getattr(vision_tower_cfg, 'vision_tower', None)) if 'clip' in vision_tower: vision_tower = CLIPVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) elif 'siglip' in vision_tower: vision_tower = SiglipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) else: raise ValueError(f'Unknown vision tower: {vision_tower}') #print(vision_tower) return vision_tower def build_audio_tower(audio_tower_cfg, delay_load=False, **kwargs): audio_tower = getattr(audio_tower_cfg, 'mm_audio_tower', getattr(audio_tower_cfg, 'audio_tower', None)) if not delay_load: beats_checkpoint = torch.load(audio_tower, map_location='cpu') if 'cfg' in beats_checkpoint: beats_cfg = BEATsConfig(beats_checkpoint['cfg']) else: beats_cfg = BEATsConfig() beats = BEATs(beats_cfg) if not audio_tower.endswith('.bin'): print(beats.load_state_dict(beats_checkpoint['model'])) else: filtered_checkpoint = {} prefix = 'model.audio_tower.' for key, value in beats_checkpoint.items(): if key.startswith(prefix): new_key = key[len(prefix):] # 去除前缀 filtered_checkpoint[new_key] = value print(beats.load_state_dict(filtered_checkpoint, strict=False)) else: beats_cfg = BEATsConfig() beats = BEATs(beats_cfg) return beats, beats_cfg