Spaces:
Running
on
Zero
Running
on
Zero
File size: 21,923 Bytes
e428df4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 |
import os
import json
import time
import hashlib
import requests
import argparse
import datetime
import numpy as np
import gradio as gr
from decord import VideoReader, cpu
from videollama2.constants import LOGDIR, NUM_FRAMES
from videollama2.conversation import (default_conversation, conv_templates,SeparatorStyle)
from videollama2.utils import (build_logger, server_error_msg, violates_moderation, moderation_msg)
logger = build_logger("gradio_web_server", "gradio_web_server.log")
headers = {"User-Agent": "Videollama2 Client"}
no_change_btn = gr.Button.update()
enable_btn = gr.Button.update(interactive=True)
disable_btn = gr.Button.update(interactive=False)
priority = {
"vicuna-13b": "aaaaaaa",
"koala-13b": "aaaaaab",
}
def get_conv_log_filename():
t = datetime.datetime.now()
name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json")
return name
def get_model_list():
ret = requests.post(args.controller_url + "/refresh_all_workers")
assert ret.status_code == 200
ret = requests.post(args.controller_url + "/list_models")
models = ret.json()["models"]
models.sort(key=lambda x: priority.get(x, x))
logger.info(f"Models: {models}")
return models
get_window_url_params = """
function() {
const params = new URLSearchParams(window.location.search);
url_params = Object.fromEntries(params);
console.log(url_params);
return url_params;
}
"""
def load_demo(url_params, request: gr.Request):
logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}")
dropdown_update = gr.Dropdown.update(visible=True)
if "model" in url_params:
model = url_params["model"]
if model in models:
dropdown_update = gr.Dropdown.update(
value=model, visible=True)
state = default_conversation.copy()
return state, dropdown_update
def load_demo_refresh_model_list(request: gr.Request):
logger.info(f"load_demo. ip: {request.client.host}")
models = get_model_list()
state = default_conversation.copy()
dropdown_update = gr.Dropdown.update(
choices=models,
value=models[0] if len(models) > 0 else ""
)
return state, dropdown_update
def vote_last_response(state, vote_type, model_selector, request: gr.Request):
with open(get_conv_log_filename(), "a") as fout:
data = {
"tstamp": round(time.time(), 4),
"type": vote_type,
"model": model_selector,
"state": state.dict(),
"ip": request.client.host,
}
fout.write(json.dumps(data) + "\n")
def upvote_last_response(state, model_selector, request: gr.Request):
logger.info(f"upvote. ip: {request.client.host}")
vote_last_response(state, "upvote", model_selector, request)
return ("",) + (disable_btn,) * 3
def downvote_last_response(state, model_selector, request: gr.Request):
logger.info(f"downvote. ip: {request.client.host}")
vote_last_response(state, "downvote", model_selector, request)
return ("",) + (disable_btn,) * 3
def flag_last_response(state, model_selector, request: gr.Request):
logger.info(f"flag. ip: {request.client.host}")
vote_last_response(state, "flag", model_selector, request)
return ("",) + (disable_btn,) * 3
def regenerate(state, image_process_mode, request: gr.Request):
logger.info(f"regenerate. ip: {request.client.host}")
state.messages[-1][-1] = None
prev_human_msg = state.messages[-2]
if type(prev_human_msg[1]) in (tuple, list):
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode)
state.skip_next = False
# (state, chatbot, textbox, imagebox, videobox, upvote, downvote, flag, generate, clear)
return (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn,) * 5
def clear_history(request: gr.Request):
logger.info(f"clear_history. ip: {request.client.host}")
state = default_conversation.copy()
# (state, chatbot, textbox, imagebox, videobox, upvote, downvote, flag, generate, clear)
return (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn,) * 5
def add_text_ori(state, text, image, video, image_process_mode, request: gr.Request):
# note: imagebox itself is PIL object while videobox is filepath
logger.info(f"add_text. ip: {request.client.host}. len: {len(text)}")
if len(text) <= 0 and image is None:
state.skip_next = True
return (state, state.to_gradio_chatbot(), "", None) + (no_change_btn,) * 5
if args.moderate:
flagged = violates_moderation(text)
if flagged:
state.skip_next = True
return (state, state.to_gradio_chatbot(), moderation_msg, None) + (
no_change_btn,) * 5
assert image is None or video is None, "Please don't feed image and video inputs at the same time!!!"
text = text[:1536] # Hard cut-off
if image is not None:
# here image is the PIL object itself
text = text[:1200] # Hard cut-off for images
if '<image>' not in text:
# text = '<Image><image></Image>' + text
text = text + '\n<image>'
text = (text, image, image_process_mode)
if len(state.get_images(return_pil=True)) > 0:
state = default_conversation.copy()
state.modality = "image"
if video is not None:
print("Video box:", video)
# here video is the file path of video
text = text[:1200] # Hard cut-off for images
if '<video>' not in text:
# text = '<Image><image></Image>' + text
text = text + '\n<video>'
text = (text, video, image_process_mode)
if len(state.get_videos(return_pil=True)) > 0:
state = default_conversation.copy()
state.modality = "video"
print("Set modality as video...")
state.append_message(state.roles[0], text)
state.append_message(state.roles[1], None)
state.skip_next = False
# (state, chatbot, textbox, imagebox, videobox, upvote, downvote, flag, generate, clear)
return (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn,) * 5
def add_text(state, text, image, video, image_process_mode, request: gr.Request):
logger.info(f"add_text. ip: {request.client.host}. len: {len(text)}")
# if input is new video or image ,reset the state
if image is not None or video is not None:
state = default_conversation.copy()
if len(text) <= 0 and image is None and video is None:
state.skip_next = True
return (state, state.to_gradio_chatbot(), "", None, None) + (no_change_btn,) * 5
if args.moderate:
flagged = violates_moderation(text)
if flagged:
state.skip_next = True
return (state, state.to_gradio_chatbot(), moderation_msg, None) + (no_change_btn,) * 5
# process the input video
if video is not None:
text = text[:1200] #
if '<video>' not in text:
text = text + '\n<video>'
text = (text, video, image_process_mode)
state.modality = "video"
# process the input image
elif image is not None:
text = text[:1200] #
if '<image>' not in text:
text = text + '\n<image>'
text = (text, image, image_process_mode)
state.modality = "image"
elif state.modality == "image" and len(text)>0:
state.modality = "image_text"
text = text[:1536] # Hard cut-off
elif state.modality == "video" and len(text)>0:
state.modality = "video_text"
text = text[:1536] # Hard cut-off
state.append_message(state.roles[0], text)
state.append_message(state.roles[1], None)
state.skip_next = False
return (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn,) * 5
def http_bot(state, model_selector, temperature, top_p, max_new_tokens, request: gr.Request):
logger.info(f"http_bot. ip: {request.client.host}")
start_tstamp = time.time()
model_name = model_selector
if state.skip_next:
# This generate call is skipped due to invalid inputs
yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5
return
if len(state.messages) == state.offset + 2:
# First round of conversation
if "llava" in model_name.lower():
if 'llama-2' in model_name.lower():
template_name = "llava_llama_2"
elif "v1" in model_name.lower():
if 'mmtag' in model_name.lower():
template_name = "v1_mmtag"
elif 'plain' in model_name.lower() and 'finetune' not in model_name.lower():
template_name = "v1_mmtag"
else:
template_name = "llava_v1"
elif "mpt" in model_name.lower():
template_name = "mpt"
else:
if 'mmtag' in model_name.lower():
template_name = "v0_mmtag"
elif 'plain' in model_name.lower() and 'finetune' not in model_name.lower():
template_name = "v0_mmtag"
else:
template_name = "llava_v0"
elif "mpt" in model_name:
template_name = "mpt_text"
elif "llama-2" in model_name:
template_name = "llama_2"
else:
template_name = "vicuna_v1"
template_name = "llava_v1"
new_state = conv_templates[template_name].copy()
new_state.append_message(new_state.roles[0], state.messages[-2][1])
new_state.append_message(new_state.roles[1], None)
new_state.modality = state.modality
state = new_state
# Query worker address
controller_url = args.controller_url
ret = requests.post(controller_url + "/get_worker_address",
json={"model": model_name})
worker_addr = ret.json()["address"]
logger.info(f"model_name: {model_name}, worker_addr: {worker_addr}")
# No available worker
if worker_addr == "":
state.messages[-1][-1] = server_error_msg
yield (state, state.to_gradio_chatbot(), disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
return
# Construct prompt
prompt = state.get_prompt()
if state.modality == "image" or state.modality == "image_text":
all_images = state.get_images(return_pil=True) # return PIL.Image object
elif state.modality == "video" or state.modality == "video_text":
all_images = state.get_videos(return_pil=True) # return video frames where each frame is a PIL.Image object
all_image_hash = [hashlib.md5(image.tobytes()).hexdigest() for image in all_images]
for idx, (image, hash) in enumerate(zip(all_images, all_image_hash)):
t = datetime.datetime.now()
if state.modality == "image" or state.modality == "image_text":
filename = os.path.join(LOGDIR, "serve_images", f"{t.year}-{t.month:02d}-{t.day:02d}", f"{hash}.jpg")
elif state.modality == "video" or state.modality == "video_text":
filename = os.path.join(LOGDIR, "serve_videos", f"{t.year}-{t.month:02d}-{t.day:02d}", f"{hash}_{idx}.jpg")
if not os.path.isfile(filename):
os.makedirs(os.path.dirname(filename), exist_ok=True)
image.save(filename)
# Make requests
pload = {
"model": model_name,
"prompt": prompt,
"temperature": float(temperature),
"top_p": float(top_p),
"max_new_tokens": min(int(max_new_tokens), 1536),
"stop": state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2,
#"images": f'List of {len(state.get_images())} images: {all_image_hash}',
"images": f'List of {len(all_image_hash)} images: {all_image_hash}',
}
logger.info(f"==== request ====\n{pload}")
if state.modality == "image" or state.modality == "image_text":
pload['images'] = state.get_images()
elif state.modality == "video" or state.modality == "video_text":
pload['images'] = state.get_videos()
state.messages[-1][-1] = "β"
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
try:
# Stream output
response = requests.post(worker_addr + "/worker_generate_stream",
headers=headers, json=pload, stream=True, timeout=10)
for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
if chunk:
data = json.loads(chunk.decode())
if data["error_code"] == 0:
output = data["text"][len(prompt):].strip()
state.messages[-1][-1] = output + "β"
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
else:
output = data["text"] + f" (error_code: {data['error_code']})"
state.messages[-1][-1] = output
yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
return
time.sleep(0.03)
except requests.exceptions.RequestException as e:
state.messages[-1][-1] = server_error_msg
yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
return
state.messages[-1][-1] = state.messages[-1][-1][:-1]
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5
finish_tstamp = time.time()
logger.info(f"{output}")
with open(get_conv_log_filename(), "a") as fout:
data = {
"tstamp": round(finish_tstamp, 4),
"type": "chat",
"model": model_name,
"start": round(start_tstamp, 4),
"finish": round(start_tstamp, 4),
#"state": state.dict(),
"images": all_image_hash,
"ip": request.client.host,
}
fout.write(json.dumps(data) + "\n")
title_markdown = ("""
# The publicl release of VideoLLaMA2
""")
tos_markdown = ("""
### Terms of use
By using this service, users are required to agree to the following terms:
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research.
Please click the "Flag" button if you get any inappropriate answer! We will collect those to keep improving our moderator.
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
""")
learn_more_markdown = ("""
### License
The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation.
""")
block_css = """
#buttons button {
min-width: min(120px,100%);
}
"""
def build_demo(embed_mode):
textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", container=False)
with gr.Blocks(title="Video-Llama", theme=gr.themes.Default(), css=block_css) as demo:
state = gr.State()
if not embed_mode:
gr.Markdown(title_markdown)
with gr.Row():
with gr.Column(scale=3):
with gr.Row(elem_id="model_selector_row"):
model_selector = gr.Dropdown(
choices=models,
value=models[0] if len(models) > 0 else "",
interactive=True,
show_label=False,
container=False)
imagebox = gr.Image(type="pil")
videobox = gr.Video()
image_process_mode = gr.Radio(
["Crop", "Resize", "Pad", "Default"],
value="Default",
label="Preprocess for non-square image", visible=False)
cur_dir = os.path.dirname(os.path.abspath(__file__))
gr.Examples(examples=[
[f"{cur_dir}/examples/extreme_ironing.jpg", "What is unusual about this image?"],
[f"{cur_dir}/examples/waterview.jpg", "What are the things I should be cautious about when I visit here?"],
[f"{cur_dir}/examples/desert.jpg", "If there are factual errors in the questions, point it out; if not, proceed answering the question. Whatβs happening in the desert?"],
], inputs=[imagebox, textbox], label="Image examples")
# video example inputs
gr.Examples(examples=[
[f"{cur_dir}/examples/sample_demo_1.mp4", "Why is this video funny?"],
[f"{cur_dir}/examples/sample_demo_3.mp4", "Can you identify any safety hazards in this video?"],
[f"{cur_dir}/examples/1034346401.mp4", "What is this young woman doing?"]
], inputs=[videobox, textbox], label="Video examples")
#[f"{cur_dir}/examples/sample_demo_9.mp4", "Describe the video in detail and please do not generate repetitive content."]
with gr.Accordion("Parameters", open=False) as parameter_row:
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.1, interactive=True, label="Temperature",)
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Top P",)
max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",)
with gr.Column(scale=8):
chatbot = gr.Chatbot(elem_id="chatbot", label="Videollama2 Chatbot", height=550)
with gr.Row():
with gr.Column(scale=8):
textbox.render()
with gr.Column(scale=1, min_width=50):
submit_btn = gr.Button(value="Send", variant="primary")
with gr.Row(elem_id="buttons") as button_row:
upvote_btn = gr.Button(value="π Upvote", interactive=False)
downvote_btn = gr.Button(value="π Downvote", interactive=False)
flag_btn = gr.Button(value="β οΈ Flag", interactive=False)
#stop_btn = gr.Button(value="βΉοΈ Stop Generation", interactive=False)
regenerate_btn = gr.Button(value="π Regenerate", interactive=False)
clear_btn = gr.Button(value="ποΈ Clear", interactive=False)
if not embed_mode:
gr.Markdown(tos_markdown)
gr.Markdown(learn_more_markdown)
url_params = gr.JSON(visible=False)
# Register listeners
btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn]
upvote_btn.click(upvote_last_response,
[state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn])
downvote_btn.click(downvote_last_response,
[state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn])
flag_btn.click(flag_last_response,
[state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn])
regenerate_btn.click(regenerate, [state, image_process_mode],
[state, chatbot, textbox, imagebox, videobox] + btn_list).then(
http_bot, [state, model_selector, temperature, top_p, max_output_tokens],
[state, chatbot] + btn_list)
clear_btn.click(clear_history, None, [state, chatbot, textbox, imagebox, videobox] + btn_list)
textbox.submit(add_text, [state, textbox, imagebox, videobox, image_process_mode], [state, chatbot, textbox, imagebox, videobox] + btn_list
).then(http_bot, [state, model_selector, temperature, top_p, max_output_tokens],
[state, chatbot] + btn_list)
submit_btn.click(add_text, [state, textbox, imagebox, videobox, image_process_mode], [state, chatbot, textbox, imagebox, videobox] + btn_list
).then(http_bot, [state, model_selector, temperature, top_p, max_output_tokens],
[state, chatbot] + btn_list)
if args.model_list_mode == "once":
demo.load(load_demo, [url_params], [state, model_selector],
_js=get_window_url_params)
elif args.model_list_mode == "reload":
demo.load(load_demo_refresh_model_list, None, [state, model_selector])
else:
raise ValueError(f"Unknown model list mode: {args.model_list_mode}")
return demo
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="0.0.0.0")
parser.add_argument("--port", type=int)
parser.add_argument("--controller-url", type=str, default="http://localhost:21001")
parser.add_argument("--concurrency-count", type=int, default=10)
parser.add_argument("--model-list-mode", type=str, default="once",
choices=["once", "reload"])
parser.add_argument("--share", action="store_true")
parser.add_argument("--moderate", action="store_true")
parser.add_argument("--embed", action="store_true")
args = parser.parse_args()
logger.info(f"args: {args}")
models = get_model_list()
logger.info(args)
demo = build_demo(args.embed)
demo.queue(
concurrency_count=args.concurrency_count,
api_open=False
).launch(
server_name=args.host,
server_port=args.port,
share=args.share
)
|