import os
import os.path as osp

import gradio as gr
import spaces
import torch
from threading import Thread
from transformers import AutoModelForCausalLM, AutoProcessor, TextIteratorStreamer


HEADER = ("""
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
  <a href="https://github.com/DAMO-NLP-SG/VideoLLaMA3" style="margin-right: 20px; text-decoration: none; display: flex; align-items: center;">
    <img src="https://github.com/DAMO-NLP-SG/VideoLLaMA3/blob/main/assets/logo.png?raw=true" alt="VideoLLaMA 3 🔥🚀🔥" style="max-width: 120px; height: auto;">
  </a>
  <div>
    <h1>VideoLLaMA 3: Frontier Multimodal Foundation Models for Video Understanding</h1>
    <h5 style="margin: 0;">If this demo please you, please give us a star ⭐ on Github or 💖 on this space.</h5>
  </div>
</div>

<div style="display: flex; justify-content: center; margin-top: 10px;">
  <a href="https://github.com/DAMO-NLP-SG/VideoLLaMA3"><img src='https://img.shields.io/badge/Github-VideoLLaMA3-9C276A' style="margin-right: 5px;"></a>
  <a href="https://arxiv.org/pdf/2501.13106"><img src="https://img.shields.io/badge/Arxiv-2501.13106-AD1C18" style="margin-right: 5px;"></a>
  <a href="https://huggingface.co/collections/DAMO-NLP-SG/videollama3-678cdda9281a0e32fe79af15"><img src="https://img.shields.io/badge/🤗-Checkpoints-ED5A22.svg" style="margin-right: 5px;"></a>
  <a href="https://github.com/DAMO-NLP-SG/VideoLLaMA3/stargazers"><img src="https://img.shields.io/github/stars/DAMO-NLP-SG/VideoLLaMA3.svg?style=social"></a>
</div>
""")

device = "cuda"
model = AutoModelForCausalLM.from_pretrained(
    "DAMO-NLP-SG/VideoLLaMA3-7B-Image",
    trust_remote_code=True,
    torch_dtype=torch.bfloat16,
    attn_implementation="flash_attention_2",
)
model.to(device)
processor = AutoProcessor.from_pretrained("DAMO-NLP-SG/VideoLLaMA3-7B-Image", trust_remote_code=True)


example_dir = "./examples"
image_formats = ("png", "jpg", "jpeg")
video_formats = ("mp4",)

image_examples, video_examples = [], []
if example_dir is not None:
    example_files = [
        osp.join(example_dir, f) for f in os.listdir(example_dir)
    ]
    for example_file in example_files:
        if example_file.endswith(image_formats):
            image_examples.append([example_file])
        elif example_file.endswith(video_formats):
            video_examples.append([example_file])


def _on_video_upload(messages, video):
        if video is not None:
            # messages.append({"role": "user", "content": gr.Video(video)})
            messages.append({"role": "user", "content": {"path": video}})
        return messages, None
    
def _on_image_upload(messages, image):
    if image is not None:
        # messages.append({"role": "user", "content": gr.Image(image)})
        messages.append({"role": "user", "content": {"path": image}})
    return messages, None

def _on_text_submit(messages, text):
    messages.append({"role": "user", "content": text})
    return messages, ""

@spaces.GPU(duration=120)
def _predict(messages, input_text, do_sample, temperature, top_p, max_new_tokens,
             fps, max_frames):
    if len(input_text) > 0:
        messages.append({"role": "user", "content": input_text})
    new_messages = []
    contents = []
    for message in messages:
        if message["role"] == "assistant":
            if len(contents):
                new_messages.append({"role": "user", "content": contents})
                contents = []
            new_messages.append(message)
        elif message["role"] == "user":
            if isinstance(message["content"], str):
                contents.append(message["content"])
            else:
                media_path = message["content"][0]
                if media_path.endswith(video_formats):
                    contents.append({"type": "video", "video": {"video_path": media_path, "fps": fps, "max_frames": max_frames}})
                elif media_path.endswith(image_formats):
                    contents.append({"type": "image", "image": {"image_path": media_path}})
                else:
                    raise ValueError(f"Unsupported media type: {media_path}")

    if len(contents):
        new_messages.append({"role": "user", "content": contents})

    if len(new_messages) == 0 or new_messages[-1]["role"] != "user":
        return messages

    generation_config = {
        "do_sample": do_sample,
        "temperature": temperature,
        "top_p": top_p,
        "max_new_tokens": max_new_tokens
    }

    inputs = processor(
        conversation=new_messages,
        add_system_prompt=True,
        add_generation_prompt=True,
        return_tensors="pt"
    )
    inputs = {k: v.to(device) if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}
    if "pixel_values" in inputs:
        inputs["pixel_values"] = inputs["pixel_values"].to(torch.bfloat16)

    streamer = TextIteratorStreamer(processor.tokenizer, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = {
        **inputs,
        **generation_config,
        "streamer": streamer,
    }

    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()

    messages.append({"role": "assistant", "content": ""})
    for token in streamer:
        messages[-1]['content'] += token
        yield messages


with gr.Blocks() as interface:
    gr.HTML(HEADER)
    with gr.Row():
        chatbot = gr.Chatbot(type="messages", elem_id="chatbot", height=835)

        with gr.Column():
            with gr.Tab(label="Input"):

                with gr.Row():
                    # input_video = gr.Video(sources=["upload"], label="Upload Video")
                    input_image = gr.Image(sources=["upload"], type="filepath", label="Upload Image")
                
                input_text = gr.Textbox(label="Input Text", placeholder="Type your message here and press enter to submit")

                submit_button = gr.Button("Generate")

                gr.Examples(examples=[
                    [f"examples/cake.jpg", "What are the words on the cake?"],
                    [f"examples/chart.jpg", "What do you think of this stock? Is it worth holding? Why?"],
                    [f"examples/performance.png", "Which model do you think is optimal? Why?"],
                ], inputs=[input_image, input_text], label="Image examples")

            with gr.Tab(label="Configure"):
                with gr.Accordion("Generation Config", open=True):
                    do_sample = gr.Checkbox(value=True, label="Do Sample")
                    temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, label="Temperature")
                    top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.9, label="Top P")
                    max_new_tokens = gr.Slider(minimum=0, maximum=4096, value=2048, step=1, label="Max New Tokens")

                with gr.Accordion("Video Config", open=True):
                    fps = gr.Slider(minimum=0.0, maximum=10.0, value=1, label="FPS")
                    max_frames = gr.Slider(minimum=0, maximum=256, value=180, step=1, label="Max Frames")

    # input_video.change(_on_video_upload, [chatbot, input_video], [chatbot, input_video])
    input_image.change(_on_image_upload, [chatbot, input_image], [chatbot, input_image])
    input_text.submit(_on_text_submit, [chatbot, input_text], [chatbot, input_text])
    submit_button.click(
        _predict,
        [
            chatbot, input_text, do_sample, temperature, top_p, max_new_tokens,
            fps, max_frames
        ],
        [chatbot],
    )


if __name__ == "__main__":
    interface.launch()