|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import re |
|
from dataclasses import asdict, dataclass |
|
from typing import Any, Dict, List, Optional, Pattern, Union |
|
|
|
import numpy as np |
|
import torch |
|
import torchaudio |
|
from encodec import EncodecModel |
|
from encodec.utils import convert_audio |
|
|
|
def remove_encodec_weight_norm(model): |
|
from encodec.modules import SConv1d |
|
from encodec.modules.seanet import SConvTranspose1d, SEANetResnetBlock |
|
from torch.nn.utils import remove_weight_norm |
|
|
|
encoder = model.encoder.model |
|
for key in encoder._modules: |
|
if isinstance(encoder._modules[key], SEANetResnetBlock): |
|
remove_weight_norm(encoder._modules[key].shortcut.conv.conv) |
|
block_modules = encoder._modules[key].block._modules |
|
for skey in block_modules: |
|
if isinstance(block_modules[skey], SConv1d): |
|
remove_weight_norm(block_modules[skey].conv.conv) |
|
elif isinstance(encoder._modules[key], SConv1d): |
|
remove_weight_norm(encoder._modules[key].conv.conv) |
|
|
|
decoder = model.decoder.model |
|
for key in decoder._modules: |
|
if isinstance(decoder._modules[key], SEANetResnetBlock): |
|
remove_weight_norm(decoder._modules[key].shortcut.conv.conv) |
|
block_modules = decoder._modules[key].block._modules |
|
for skey in block_modules: |
|
if isinstance(block_modules[skey], SConv1d): |
|
remove_weight_norm(block_modules[skey].conv.conv) |
|
elif isinstance(decoder._modules[key], SConvTranspose1d): |
|
remove_weight_norm(decoder._modules[key].convtr.convtr) |
|
elif isinstance(decoder._modules[key], SConv1d): |
|
remove_weight_norm(decoder._modules[key].conv.conv) |
|
|
|
|
|
class AudioTokenizer: |
|
"""EnCodec audio.""" |
|
|
|
def __init__( |
|
self, |
|
device: Any = None, |
|
) -> None: |
|
|
|
model = EncodecModel.encodec_model_24khz() |
|
model.set_target_bandwidth(6.0) |
|
remove_encodec_weight_norm(model) |
|
|
|
if not device: |
|
device = torch.device("cpu") |
|
if torch.cuda.is_available(): |
|
device = torch.device("cuda:0") |
|
|
|
self._device = device |
|
|
|
self.codec = model.to(device) |
|
self.sample_rate = model.sample_rate |
|
self.channels = model.channels |
|
|
|
@property |
|
def device(self): |
|
return self._device |
|
|
|
def encode(self, wav: torch.Tensor) -> torch.Tensor: |
|
return self.codec.encode(wav.to(self.device)) |
|
|
|
def decode(self, frames: torch.Tensor) -> torch.Tensor: |
|
return self.codec.decode(frames) |
|
|
|
|
|
def tokenize_audio(tokenizer: AudioTokenizer, audio): |
|
|
|
if isinstance(audio, str): |
|
wav, sr = torchaudio.load(audio) |
|
else: |
|
wav, sr = audio |
|
wav = convert_audio(wav, sr, tokenizer.sample_rate, tokenizer.channels) |
|
wav = wav.unsqueeze(0) |
|
|
|
|
|
with torch.no_grad(): |
|
encoded_frames = tokenizer.encode(wav) |
|
return encoded_frames |
|
|
|
|
|
if __name__ == "__main__": |
|
model = EncodecModel.encodec_model_24khz() |
|
model.set_target_bandwidth(6.0) |
|
|
|
samples = torch.from_numpy(np.random.random([4, 1, 1600])).type( |
|
torch.float32 |
|
) |
|
codes_raw = model.encode(samples) |
|
|
|
remove_encodec_weight_norm(model) |
|
codes_norm = model.encode(samples) |
|
|
|
assert torch.allclose(codes_raw[0][0], codes_norm[0][0]) |
|
|