Spaces:
Runtime error
Runtime error
import sys | |
from functools import reduce | |
import librosa | |
import numpy as np | |
import torch | |
from torch.nn.modules.module import _addindent | |
from .constants import * # noqa: F403 | |
def cycle(iterable): | |
while True: | |
for item in iterable: | |
yield item | |
def summary(model, file=sys.stdout): | |
def repr(model): | |
# We treat the extra repr like the sub-module, one item per line | |
extra_lines = [] | |
extra_repr = model.extra_repr() | |
# empty string will be split into list [''] | |
if extra_repr: | |
extra_lines = extra_repr.split('\n') | |
child_lines = [] | |
total_params = 0 | |
for key, module in model._modules.items(): | |
mod_str, num_params = repr(module) | |
mod_str = _addindent(mod_str, 2) | |
child_lines.append('(' + key + '): ' + mod_str) | |
total_params += num_params | |
lines = extra_lines + child_lines | |
for name, p in model._parameters.items(): | |
if hasattr(p, 'shape'): | |
total_params += reduce(lambda x, y: x * y, p.shape) | |
main_str = model._get_name() + '(' | |
if lines: | |
# simple one-liner info, which most builtin Modules will use | |
if len(extra_lines) == 1 and not child_lines: | |
main_str += extra_lines[0] | |
else: | |
main_str += '\n ' + '\n '.join(lines) + '\n' | |
main_str += ')' | |
if file is sys.stdout: | |
main_str += ', \033[92m{:,}\033[0m params'.format(total_params) | |
else: | |
main_str += ', {:,} params'.format(total_params) | |
return main_str, total_params | |
string, count = repr(model) | |
if file is not None: | |
if isinstance(file, str): | |
file = open(file, 'w') | |
print(string, file=file) | |
file.flush() | |
return count | |
def to_local_average_cents(salience, center=None, thred=0.05): | |
""" | |
find the weighted average cents near the argmax bin | |
""" | |
if not hasattr(to_local_average_cents, 'cents_mapping'): | |
# the bin number-to-cents mapping | |
to_local_average_cents.cents_mapping = ( | |
20 * torch.arange(N_CLASS) + CONST).to(salience.device) # noqa: F405 | |
if salience.ndim == 1: | |
if center is None: | |
center = int(torch.argmax(salience)) | |
start = max(0, center - 4) | |
end = min(len(salience), center + 5) | |
salience = salience[start:end] | |
product_sum = torch.sum( | |
salience * to_local_average_cents.cents_mapping[start:end]) | |
weight_sum = torch.sum(salience) | |
return product_sum / weight_sum if torch.max(salience) > thred else 0 | |
if salience.ndim == 2: | |
return torch.Tensor([to_local_average_cents(salience[i, :], None, thred) for i in | |
range(salience.shape[0])]).to(salience.device) | |
raise Exception("label should be either 1d or 2d ndarray") | |
def to_viterbi_cents(salience, thred=0.05): | |
# Create viterbi transition matrix | |
if not hasattr(to_viterbi_cents, 'transition'): | |
xx, yy = torch.meshgrid(range(N_CLASS), range(N_CLASS)) # noqa: F405 | |
transition = torch.maximum(30 - abs(xx - yy), 0) | |
transition = transition / transition.sum(axis=1, keepdims=True) | |
to_viterbi_cents.transition = transition | |
# Convert to probability | |
prob = salience.T | |
prob = prob / prob.sum(axis=0) | |
# Perform viterbi decoding | |
path = librosa.sequence.viterbi(prob.detach().cpu().numpy(), to_viterbi_cents.transition).astype(np.int64) | |
return torch.Tensor([to_local_average_cents(salience[i, :], path[i], thred) for i in | |
range(len(path))]).to(salience.device) | |