import torch from modules.F0Predictor.crepe import CrepePitchExtractor from modules.F0Predictor.F0Predictor import F0Predictor class CrepeF0Predictor(F0Predictor): def __init__(self,hop_length=512,f0_min=50,f0_max=1100,device=None,sampling_rate=44100,threshold=0.05,model="full"): self.F0Creper = CrepePitchExtractor(hop_length=hop_length,f0_min=f0_min,f0_max=f0_max,device=device,threshold=threshold,model=model) self.hop_length = hop_length self.f0_min = f0_min self.f0_max = f0_max self.device = device self.threshold = threshold self.sampling_rate = sampling_rate self.name = "crepe" def compute_f0(self,wav,p_len=None): x = torch.FloatTensor(wav).to(self.device) if p_len is None: p_len = x.shape[0]//self.hop_length else: assert abs(p_len-x.shape[0]//self.hop_length) < 4, "pad length error" f0,uv = self.F0Creper(x[None,:].float(),self.sampling_rate,pad_to=p_len) return f0 def compute_f0_uv(self,wav,p_len=None): x = torch.FloatTensor(wav).to(self.device) if p_len is None: p_len = x.shape[0]//self.hop_length else: assert abs(p_len-x.shape[0]//self.hop_length) < 4, "pad length error" f0,uv = self.F0Creper(x[None,:].float(),self.sampling_rate,pad_to=p_len) return f0,uv