File size: 3,864 Bytes
5f99fb0
3de6292
 
fa3568b
2c92fe0
 
 
5f99fb0
 
 
 
 
 
 
3de6292
942680d
5f99fb0
 
 
 
3de6292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee3713f
 
 
 
 
 
 
 
 
 
 
 
 
2afd24b
3de6292
ee3713f
 
 
3de6292
5f99fb0
 
 
 
 
 
 
3de6292
 
5f99fb0
 
 
 
 
3de6292
 
 
5f99fb0
3de6292
 
 
 
5f99fb0
 
 
3de6292
 
 
 
 
 
 
5f99fb0
 
 
3de6292
5f99fb0
 
 
 
3de6292
91a6e20
3de6292
5f99fb0
3de6292
5f99fb0
 
 
 
 
 
 
 
 
 
 
ee3713f
 
5f99fb0
 
 
 
ee3713f
5f99fb0
 
 
2afd24b
5f99fb0
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import gradio as gr
import requests
import os
import json
from google.oauth2 import service_account
from google.cloud import storage




# 读取图片
import base64
# Function to encode the image
def encode_image(image_path):
    with open(image_path, "rb") as image_file:
        return base64.b64encode(image_file.read()).decode('utf-8')


openai_api_key = os.environ.get('openai_api_key')

# 将图片上传到google cloud storage
def upload_image_to_gcs_blob(image):

    google_creds = os.environ.get("GOOGLE_APPLICATION_CREDENTIALS_JSON")

    creds_json = json.loads(google_creds)
    credentials = service_account.Credentials.from_service_account_info(creds_json)

    # 现在您可以使用这些凭证对Google Cloud服务进行认证
    storage_client = storage.Client(credentials=credentials, project=creds_json['project_id'])

    bucket_name = os.environ.get('bucket_name')
    bucket = storage_client.bucket(bucket_name)
    
    destination_blob_name = os.path.basename(image)
    blob = bucket.blob(destination_blob_name)

    blob.upload_from_filename(image)

    public_url = blob.public_url
    
    return public_url


def get_supabase_client():
    url = os.environ.get('supabase_url')
    key = os.environ.get('supbase_key')
    supabase = create_client(url, key)
    return supabase

def supabase_insert_ask_image(question,image,response_content):
    supabase = get_supabase_client()
    data, count = supabase.table('ask_image').insert({"question": question, "image": image,"response_content":response_content}).execute()




def ask_image(text,image,api_token=openai_api_key):
    public_url = upload_image_to_gcs_blob(image)
    print(text)
    print(public_url)
    print('-----------------------\n')
    messages=[
      {
        "role": "user",
        "content": [
          {"type": "text", "text": text},
          {
            "type": "image_url",
            "image_url": {
                # "url":f"data:image/jpeg;base64,{base64_image}"
                "url": public_url
            },
          },
        ],
      }
    ]
    
    # 请求头部信息
    headers = {
      'Authorization': f'Bearer {api_token}'
    }
    
    # 请求体信息
    data = {
      'model': 'gpt-4o',  # 可以根据需要更换其他模型
      'messages': messages,
      'temperature': 0.7  # 可以根据需要调整
    }
    
    
    # 设定最大重试次数
    max_retry = 3
    
    for i in range(max_retry):
      try:
          # 发送请求
          response = requests.post('https://burn.hair/v1/chat/completions', headers=headers, json=data)
    
          # 解析响应内容
          response_data = response.json()
          response_content = response_data['choices'][0]['message']['content']
          usage = response_data['usage']
    
          # response_content = 'test response'
    
          return response_content
    
      except Exception as e:
          # 如果已经达到最大重试次数,那么返回空值
          if i == max_retry - 1:
              print(f'重试次数已达上限,仍未能成功获取数据,错误信息:{e}')
              response_content = ''
              usage = {}
              return response_content
          else:
              # 如果未达到最大重试次数,打印错误信息,并继续下一次循环
              print(f'第{i+1}次请求失败,错误信息:{e},准备进行第{i+2}次尝试')

    supabase_insert_ask_image(text,public_url,response_content)


# gradio demo

title = "Ask Image"
description = "Ask anything about your Image with GPT-4o"

demo = gr.Interface(
    fn=ask_image,
    inputs=[gr.Text(label="Question"),gr.Image(label='',type='filepath')],
    outputs=[gr.Textbox(label="Answer",lines=3)],
    title = title,
    description = description
)
demo.queue(max_size = 20)

demo.launch(share = True)