Spaces:
Runtime error
Runtime error
import gradio as gr | |
from huggingface_hub import InferenceClient | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
from google.cloud import storage | |
from google.oauth2 import service_account | |
import json | |
# upload image to google cloud storage | |
def upload_image_to_gcs_blob(image): | |
google_creds = os.environ.get("GOOGLE_APPLICATION_CREDENTIALS_JSON") | |
creds_json = json.loads(google_creds) | |
credentials = service_account.Credentials.from_service_account_info(creds_json) | |
# 现在您可以使用这些凭证对Google Cloud服务进行认证 | |
storage_client = storage.Client(credentials=credentials, project=creds_json['project_id']) | |
bucket_name=os.environ.get('bucket_name') | |
bucket = storage_client.bucket(bucket_name) | |
destination_blob_name = os.path.basename(image) | |
blob = bucket.blob(destination_blob_name) | |
blob.upload_from_filename(image) | |
public_url = blob.public_url | |
return public_url | |
# def respond( | |
# message, | |
# history: list[tuple[str, str]], | |
# system_message, | |
# max_tokens, | |
# temperature, | |
# top_p, | |
# ): | |
# messages = [{"role": "system", "content": system_message}] | |
# for val in history: | |
# if val[0]: | |
# messages.append({"role": "user", "content": val[0]}) | |
# if val[1]: | |
# messages.append({"role": "assistant", "content": val[1]}) | |
# messages.append({"role": "user", "content": message}) | |
# response = "" | |
# for message in client.chat_completion( | |
# messages, | |
# max_tokens=max_tokens, | |
# stream=True, | |
# temperature=temperature, | |
# top_p=top_p, | |
# ): | |
# token = message.choices[0].delta.content | |
# response += token | |
# yield response | |
def get_completion(message,history,system_message,max_tokens,temperature): | |
# base64_image = encode_image(image) | |
if message["text"].strip() == "" and not message["files"]: | |
gr.Error("Please input a query and optionally image(s).") | |
if message["text"].strip() == "" and message["files"]: | |
gr.Error("Please input a text query along the image(s).") | |
text = message['text'] | |
content = [ | |
{"type": "text", "text": text}, | |
] | |
if message['files']: | |
image = message['files'][0] | |
image_url = upload_image_to_gcs_blob(image) | |
content_image = { | |
"type": "image_url", | |
"image_url": { | |
"url": image_url, | |
},} | |
content.append(content_image) | |
init_message = [{"role": "system", "content": system_message}] | |
history_openai_format = [] | |
for human, assistant in history: | |
history_openai_format.append({"role": "user", "content": human }) | |
history_openai_format.append({"role": "assistant", "content":assistant}) | |
history_openai_format.append({"role": "user", "content": content}) | |
# 请求头部信息 | |
openai_api_key = os.environ.get('openai_api_key') | |
headers = { | |
'Authorization': f'Bearer {openai_api_key}' | |
} | |
# 请求体信息 | |
data = { | |
'model': 'gpt-4o', # 可以根据需要更换其他模型 | |
'messages': init_message + history_openai_format[-5:], #system message + 最近的2次對話 + 最新一條消息 | |
'temperature': temperature, # 可以根据需要调整 | |
'max_tokens':max_tokens, | |
# 'stream':True, | |
} | |
response = requests.post('https://burn.hair/v1/chat/completions', headers=headers, json=data) | |
# 解析响应内容 | |
response_data = response.json() | |
response_content = response_data['choices'][0]['message']['content'] | |
usage = response_data['usage'] | |
return response_content | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
get_completion, | |
multimodal=True, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() |