Spaces:
Sleeping
Sleeping
File size: 1,426 Bytes
7db1e02 c3e03be 7db1e02 c3e03be 7db1e02 c3e03be 0810bda 7db1e02 0810bda 7db1e02 0810bda 7db1e02 35cf5e9 167ecf0 7db1e02 35cf5e9 7db1e02 35cf5e9 7db1e02 b8120dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
import requests
import gradio as gr
import os
openai_api_key = os.environ.get('openai_api_key')
def moderation(input_text,api_key=openai_api_key):
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}"
}
data = {
"input": input_text
}
response = requests.post('https://api.openai.com/v1/moderations',headers=headers,json=data)
print(response.json())
result = response.json()['results'][0]
flag = 1 if result['flagged'] else 0
categories = result['categories']
scores = result['category_scores']
return flag,scores
title = "Smart content moderation"
description = "Check whether your content is potentially harmful."
# title_css = "text-align: center;"
# desc_css = "text-align: center; color: gray;"
demo = gr.Interface(
fn=moderation,
inputs=[gr.Text(label='Content',placeholder="Input your text to check")],
outputs=[
gr.Slider(label="Is it harmful?",info="1 is harmful, 0 is safe",minimum=0,maximum=1),
# gr.CheckboxGroup(),
# gr.Text(label="Categories Flag")
gr.Label(label='Categories')
],
title = title,
description = description
# css=f"""
# #header-title {{
# {title_css}
# }}
# #header-description {{
# {desc_css}
# }}
# """
)
demo.queue(max_size = 20)
demo.launch(share=True)
|