Spaces:
Runtime error
Runtime error
File size: 25,102 Bytes
cc0dd3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 |
# Copyright 2023 Open AI and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from dataclasses import dataclass
from typing import Optional, Tuple
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
from ...utils import BaseOutput
from .camera import create_pan_cameras
def sample_pmf(pmf: torch.Tensor, n_samples: int) -> torch.Tensor:
r"""
Sample from the given discrete probability distribution with replacement.
The i-th bin is assumed to have mass pmf[i].
Args:
pmf: [batch_size, *shape, n_samples, 1] where (pmf.sum(dim=-2) == 1).all()
n_samples: number of samples
Return:
indices sampled with replacement
"""
*shape, support_size, last_dim = pmf.shape
assert last_dim == 1
cdf = torch.cumsum(pmf.view(-1, support_size), dim=1)
inds = torch.searchsorted(cdf, torch.rand(cdf.shape[0], n_samples, device=cdf.device))
return inds.view(*shape, n_samples, 1).clamp(0, support_size - 1)
def posenc_nerf(x: torch.Tensor, min_deg: int = 0, max_deg: int = 15) -> torch.Tensor:
"""
Concatenate x and its positional encodings, following NeRF.
Reference: https://arxiv.org/pdf/2210.04628.pdf
"""
if min_deg == max_deg:
return x
scales = 2.0 ** torch.arange(min_deg, max_deg, dtype=x.dtype, device=x.device)
*shape, dim = x.shape
xb = (x.reshape(-1, 1, dim) * scales.view(1, -1, 1)).reshape(*shape, -1)
assert xb.shape[-1] == dim * (max_deg - min_deg)
emb = torch.cat([xb, xb + math.pi / 2.0], axis=-1).sin()
return torch.cat([x, emb], dim=-1)
def encode_position(position):
return posenc_nerf(position, min_deg=0, max_deg=15)
def encode_direction(position, direction=None):
if direction is None:
return torch.zeros_like(posenc_nerf(position, min_deg=0, max_deg=8))
else:
return posenc_nerf(direction, min_deg=0, max_deg=8)
def _sanitize_name(x: str) -> str:
return x.replace(".", "__")
def integrate_samples(volume_range, ts, density, channels):
r"""
Function integrating the model output.
Args:
volume_range: Specifies the integral range [t0, t1]
ts: timesteps
density: torch.Tensor [batch_size, *shape, n_samples, 1]
channels: torch.Tensor [batch_size, *shape, n_samples, n_channels]
returns:
channels: integrated rgb output weights: torch.Tensor [batch_size, *shape, n_samples, 1] (density
*transmittance)[i] weight for each rgb output at [..., i, :]. transmittance: transmittance of this volume
)
"""
# 1. Calculate the weights
_, _, dt = volume_range.partition(ts)
ddensity = density * dt
mass = torch.cumsum(ddensity, dim=-2)
transmittance = torch.exp(-mass[..., -1, :])
alphas = 1.0 - torch.exp(-ddensity)
Ts = torch.exp(torch.cat([torch.zeros_like(mass[..., :1, :]), -mass[..., :-1, :]], dim=-2))
# This is the probability of light hitting and reflecting off of
# something at depth [..., i, :].
weights = alphas * Ts
# 2. Integrate channels
channels = torch.sum(channels * weights, dim=-2)
return channels, weights, transmittance
class VoidNeRFModel(nn.Module):
"""
Implements the default empty space model where all queries are rendered as background.
"""
def __init__(self, background, channel_scale=255.0):
super().__init__()
background = nn.Parameter(torch.from_numpy(np.array(background)).to(dtype=torch.float32) / channel_scale)
self.register_buffer("background", background)
def forward(self, position):
background = self.background[None].to(position.device)
shape = position.shape[:-1]
ones = [1] * (len(shape) - 1)
n_channels = background.shape[-1]
background = torch.broadcast_to(background.view(background.shape[0], *ones, n_channels), [*shape, n_channels])
return background
@dataclass
class VolumeRange:
t0: torch.Tensor
t1: torch.Tensor
intersected: torch.Tensor
def __post_init__(self):
assert self.t0.shape == self.t1.shape == self.intersected.shape
def partition(self, ts):
"""
Partitions t0 and t1 into n_samples intervals.
Args:
ts: [batch_size, *shape, n_samples, 1]
Return:
lower: [batch_size, *shape, n_samples, 1] upper: [batch_size, *shape, n_samples, 1] delta: [batch_size,
*shape, n_samples, 1]
where
ts \\in [lower, upper] deltas = upper - lower
"""
mids = (ts[..., 1:, :] + ts[..., :-1, :]) * 0.5
lower = torch.cat([self.t0[..., None, :], mids], dim=-2)
upper = torch.cat([mids, self.t1[..., None, :]], dim=-2)
delta = upper - lower
assert lower.shape == upper.shape == delta.shape == ts.shape
return lower, upper, delta
class BoundingBoxVolume(nn.Module):
"""
Axis-aligned bounding box defined by the two opposite corners.
"""
def __init__(
self,
*,
bbox_min,
bbox_max,
min_dist: float = 0.0,
min_t_range: float = 1e-3,
):
"""
Args:
bbox_min: the left/bottommost corner of the bounding box
bbox_max: the other corner of the bounding box
min_dist: all rays should start at least this distance away from the origin.
"""
super().__init__()
self.min_dist = min_dist
self.min_t_range = min_t_range
self.bbox_min = torch.tensor(bbox_min)
self.bbox_max = torch.tensor(bbox_max)
self.bbox = torch.stack([self.bbox_min, self.bbox_max])
assert self.bbox.shape == (2, 3)
assert min_dist >= 0.0
assert min_t_range > 0.0
def intersect(
self,
origin: torch.Tensor,
direction: torch.Tensor,
t0_lower: Optional[torch.Tensor] = None,
epsilon=1e-6,
):
"""
Args:
origin: [batch_size, *shape, 3]
direction: [batch_size, *shape, 3]
t0_lower: Optional [batch_size, *shape, 1] lower bound of t0 when intersecting this volume.
params: Optional meta parameters in case Volume is parametric
epsilon: to stabilize calculations
Return:
A tuple of (t0, t1, intersected) where each has a shape [batch_size, *shape, 1]. If a ray intersects with
the volume, `o + td` is in the volume for all t in [t0, t1]. If the volume is bounded, t1 is guaranteed to
be on the boundary of the volume.
"""
batch_size, *shape, _ = origin.shape
ones = [1] * len(shape)
bbox = self.bbox.view(1, *ones, 2, 3).to(origin.device)
def _safe_divide(a, b, epsilon=1e-6):
return a / torch.where(b < 0, b - epsilon, b + epsilon)
ts = _safe_divide(bbox - origin[..., None, :], direction[..., None, :], epsilon=epsilon)
# Cases to think about:
#
# 1. t1 <= t0: the ray does not pass through the AABB.
# 2. t0 < t1 <= 0: the ray intersects but the BB is behind the origin.
# 3. t0 <= 0 <= t1: the ray starts from inside the BB
# 4. 0 <= t0 < t1: the ray is not inside and intersects with the BB twice.
#
# 1 and 4 are clearly handled from t0 < t1 below.
# Making t0 at least min_dist (>= 0) takes care of 2 and 3.
t0 = ts.min(dim=-2).values.max(dim=-1, keepdim=True).values.clamp(self.min_dist)
t1 = ts.max(dim=-2).values.min(dim=-1, keepdim=True).values
assert t0.shape == t1.shape == (batch_size, *shape, 1)
if t0_lower is not None:
assert t0.shape == t0_lower.shape
t0 = torch.maximum(t0, t0_lower)
intersected = t0 + self.min_t_range < t1
t0 = torch.where(intersected, t0, torch.zeros_like(t0))
t1 = torch.where(intersected, t1, torch.ones_like(t1))
return VolumeRange(t0=t0, t1=t1, intersected=intersected)
class StratifiedRaySampler(nn.Module):
"""
Instead of fixed intervals, a sample is drawn uniformly at random from each interval.
"""
def __init__(self, depth_mode: str = "linear"):
"""
:param depth_mode: linear samples ts linearly in depth. harmonic ensures
closer points are sampled more densely.
"""
self.depth_mode = depth_mode
assert self.depth_mode in ("linear", "geometric", "harmonic")
def sample(
self,
t0: torch.Tensor,
t1: torch.Tensor,
n_samples: int,
epsilon: float = 1e-3,
) -> torch.Tensor:
"""
Args:
t0: start time has shape [batch_size, *shape, 1]
t1: finish time has shape [batch_size, *shape, 1]
n_samples: number of ts to sample
Return:
sampled ts of shape [batch_size, *shape, n_samples, 1]
"""
ones = [1] * (len(t0.shape) - 1)
ts = torch.linspace(0, 1, n_samples).view(*ones, n_samples).to(t0.dtype).to(t0.device)
if self.depth_mode == "linear":
ts = t0 * (1.0 - ts) + t1 * ts
elif self.depth_mode == "geometric":
ts = (t0.clamp(epsilon).log() * (1.0 - ts) + t1.clamp(epsilon).log() * ts).exp()
elif self.depth_mode == "harmonic":
# The original NeRF recommends this interpolation scheme for
# spherical scenes, but there could be some weird edge cases when
# the observer crosses from the inner to outer volume.
ts = 1.0 / (1.0 / t0.clamp(epsilon) * (1.0 - ts) + 1.0 / t1.clamp(epsilon) * ts)
mids = 0.5 * (ts[..., 1:] + ts[..., :-1])
upper = torch.cat([mids, t1], dim=-1)
lower = torch.cat([t0, mids], dim=-1)
# yiyi notes: add a random seed here for testing, don't forget to remove
torch.manual_seed(0)
t_rand = torch.rand_like(ts)
ts = lower + (upper - lower) * t_rand
return ts.unsqueeze(-1)
class ImportanceRaySampler(nn.Module):
"""
Given the initial estimate of densities, this samples more from regions/bins expected to have objects.
"""
def __init__(
self,
volume_range: VolumeRange,
ts: torch.Tensor,
weights: torch.Tensor,
blur_pool: bool = False,
alpha: float = 1e-5,
):
"""
Args:
volume_range: the range in which a ray intersects the given volume.
ts: earlier samples from the coarse rendering step
weights: discretized version of density * transmittance
blur_pool: if true, use 2-tap max + 2-tap blur filter from mip-NeRF.
alpha: small value to add to weights.
"""
self.volume_range = volume_range
self.ts = ts.clone().detach()
self.weights = weights.clone().detach()
self.blur_pool = blur_pool
self.alpha = alpha
@torch.no_grad()
def sample(self, t0: torch.Tensor, t1: torch.Tensor, n_samples: int) -> torch.Tensor:
"""
Args:
t0: start time has shape [batch_size, *shape, 1]
t1: finish time has shape [batch_size, *shape, 1]
n_samples: number of ts to sample
Return:
sampled ts of shape [batch_size, *shape, n_samples, 1]
"""
lower, upper, _ = self.volume_range.partition(self.ts)
batch_size, *shape, n_coarse_samples, _ = self.ts.shape
weights = self.weights
if self.blur_pool:
padded = torch.cat([weights[..., :1, :], weights, weights[..., -1:, :]], dim=-2)
maxes = torch.maximum(padded[..., :-1, :], padded[..., 1:, :])
weights = 0.5 * (maxes[..., :-1, :] + maxes[..., 1:, :])
weights = weights + self.alpha
pmf = weights / weights.sum(dim=-2, keepdim=True)
inds = sample_pmf(pmf, n_samples)
assert inds.shape == (batch_size, *shape, n_samples, 1)
assert (inds >= 0).all() and (inds < n_coarse_samples).all()
t_rand = torch.rand(inds.shape, device=inds.device)
lower_ = torch.gather(lower, -2, inds)
upper_ = torch.gather(upper, -2, inds)
ts = lower_ + (upper_ - lower_) * t_rand
ts = torch.sort(ts, dim=-2).values
return ts
@dataclass
class MLPNeRFModelOutput(BaseOutput):
density: torch.Tensor
signed_distance: torch.Tensor
channels: torch.Tensor
ts: torch.Tensor
class MLPNeRSTFModel(ModelMixin, ConfigMixin):
@register_to_config
def __init__(
self,
d_hidden: int = 256,
n_output: int = 12,
n_hidden_layers: int = 6,
act_fn: str = "swish",
insert_direction_at: int = 4,
):
super().__init__()
# Instantiate the MLP
# Find out the dimension of encoded position and direction
dummy = torch.eye(1, 3)
d_posenc_pos = encode_position(position=dummy).shape[-1]
d_posenc_dir = encode_direction(position=dummy).shape[-1]
mlp_widths = [d_hidden] * n_hidden_layers
input_widths = [d_posenc_pos] + mlp_widths
output_widths = mlp_widths + [n_output]
if insert_direction_at is not None:
input_widths[insert_direction_at] += d_posenc_dir
self.mlp = nn.ModuleList([nn.Linear(d_in, d_out) for d_in, d_out in zip(input_widths, output_widths)])
if act_fn == "swish":
# self.activation = swish
# yiyi testing:
self.activation = lambda x: F.silu(x)
else:
raise ValueError(f"Unsupported activation function {act_fn}")
self.sdf_activation = torch.tanh
self.density_activation = torch.nn.functional.relu
self.channel_activation = torch.sigmoid
def map_indices_to_keys(self, output):
h_map = {
"sdf": (0, 1),
"density_coarse": (1, 2),
"density_fine": (2, 3),
"stf": (3, 6),
"nerf_coarse": (6, 9),
"nerf_fine": (9, 12),
}
mapped_output = {k: output[..., start:end] for k, (start, end) in h_map.items()}
return mapped_output
def forward(self, *, position, direction, ts, nerf_level="coarse"):
h = encode_position(position)
h_preact = h
h_directionless = None
for i, layer in enumerate(self.mlp):
if i == self.config.insert_direction_at: # 4 in the config
h_directionless = h_preact
h_direction = encode_direction(position, direction=direction)
h = torch.cat([h, h_direction], dim=-1)
h = layer(h)
h_preact = h
if i < len(self.mlp) - 1:
h = self.activation(h)
h_final = h
if h_directionless is None:
h_directionless = h_preact
activation = self.map_indices_to_keys(h_final)
if nerf_level == "coarse":
h_density = activation["density_coarse"]
h_channels = activation["nerf_coarse"]
else:
h_density = activation["density_fine"]
h_channels = activation["nerf_fine"]
density = self.density_activation(h_density)
signed_distance = self.sdf_activation(activation["sdf"])
channels = self.channel_activation(h_channels)
# yiyi notes: I think signed_distance is not used
return MLPNeRFModelOutput(density=density, signed_distance=signed_distance, channels=channels, ts=ts)
class ChannelsProj(nn.Module):
def __init__(
self,
*,
vectors: int,
channels: int,
d_latent: int,
):
super().__init__()
self.proj = nn.Linear(d_latent, vectors * channels)
self.norm = nn.LayerNorm(channels)
self.d_latent = d_latent
self.vectors = vectors
self.channels = channels
def forward(self, x: torch.Tensor) -> torch.Tensor:
x_bvd = x
w_vcd = self.proj.weight.view(self.vectors, self.channels, self.d_latent)
b_vc = self.proj.bias.view(1, self.vectors, self.channels)
h = torch.einsum("bvd,vcd->bvc", x_bvd, w_vcd)
h = self.norm(h)
h = h + b_vc
return h
class ShapEParamsProjModel(ModelMixin, ConfigMixin):
"""
project the latent representation of a 3D asset to obtain weights of a multi-layer perceptron (MLP).
For more details, see the original paper:
"""
@register_to_config
def __init__(
self,
*,
param_names: Tuple[str] = (
"nerstf.mlp.0.weight",
"nerstf.mlp.1.weight",
"nerstf.mlp.2.weight",
"nerstf.mlp.3.weight",
),
param_shapes: Tuple[Tuple[int]] = (
(256, 93),
(256, 256),
(256, 256),
(256, 256),
),
d_latent: int = 1024,
):
super().__init__()
# check inputs
if len(param_names) != len(param_shapes):
raise ValueError("Must provide same number of `param_names` as `param_shapes`")
self.projections = nn.ModuleDict({})
for k, (vectors, channels) in zip(param_names, param_shapes):
self.projections[_sanitize_name(k)] = ChannelsProj(
vectors=vectors,
channels=channels,
d_latent=d_latent,
)
def forward(self, x: torch.Tensor):
out = {}
start = 0
for k, shape in zip(self.config.param_names, self.config.param_shapes):
vectors, _ = shape
end = start + vectors
x_bvd = x[:, start:end]
out[k] = self.projections[_sanitize_name(k)](x_bvd).reshape(len(x), *shape)
start = end
return out
class ShapERenderer(ModelMixin, ConfigMixin):
@register_to_config
def __init__(
self,
*,
param_names: Tuple[str] = (
"nerstf.mlp.0.weight",
"nerstf.mlp.1.weight",
"nerstf.mlp.2.weight",
"nerstf.mlp.3.weight",
),
param_shapes: Tuple[Tuple[int]] = (
(256, 93),
(256, 256),
(256, 256),
(256, 256),
),
d_latent: int = 1024,
d_hidden: int = 256,
n_output: int = 12,
n_hidden_layers: int = 6,
act_fn: str = "swish",
insert_direction_at: int = 4,
background: Tuple[float] = (
255.0,
255.0,
255.0,
),
):
super().__init__()
self.params_proj = ShapEParamsProjModel(
param_names=param_names,
param_shapes=param_shapes,
d_latent=d_latent,
)
self.mlp = MLPNeRSTFModel(d_hidden, n_output, n_hidden_layers, act_fn, insert_direction_at)
self.void = VoidNeRFModel(background=background, channel_scale=255.0)
self.volume = BoundingBoxVolume(bbox_max=[1.0, 1.0, 1.0], bbox_min=[-1.0, -1.0, -1.0])
@torch.no_grad()
def render_rays(self, rays, sampler, n_samples, prev_model_out=None, render_with_direction=False):
"""
Perform volumetric rendering over a partition of possible t's in the union of rendering volumes (written below
with some abuse of notations)
C(r) := sum(
transmittance(t[i]) * integrate(
lambda t: density(t) * channels(t) * transmittance(t), [t[i], t[i + 1]],
) for i in range(len(parts))
) + transmittance(t[-1]) * void_model(t[-1]).channels
where
1) transmittance(s) := exp(-integrate(density, [t[0], s])) calculates the probability of light passing through
the volume specified by [t[0], s]. (transmittance of 1 means light can pass freely) 2) density and channels are
obtained by evaluating the appropriate part.model at time t. 3) [t[i], t[i + 1]] is defined as the range of t
where the ray intersects (parts[i].volume \\ union(part.volume for part in parts[:i])) at the surface of the
shell (if bounded). If the ray does not intersect, the integral over this segment is evaluated as 0 and
transmittance(t[i + 1]) := transmittance(t[i]). 4) The last term is integration to infinity (e.g. [t[-1],
math.inf]) that is evaluated by the void_model (i.e. we consider this space to be empty).
args:
rays: [batch_size x ... x 2 x 3] origin and direction. sampler: disjoint volume integrals. n_samples:
number of ts to sample. prev_model_outputs: model outputs from the previous rendering step, including
:return: A tuple of
- `channels`
- A importance samplers for additional fine-grained rendering
- raw model output
"""
origin, direction = rays[..., 0, :], rays[..., 1, :]
# Integrate over [t[i], t[i + 1]]
# 1 Intersect the rays with the current volume and sample ts to integrate along.
vrange = self.volume.intersect(origin, direction, t0_lower=None)
ts = sampler.sample(vrange.t0, vrange.t1, n_samples)
ts = ts.to(rays.dtype)
if prev_model_out is not None:
# Append the previous ts now before fprop because previous
# rendering used a different model and we can't reuse the output.
ts = torch.sort(torch.cat([ts, prev_model_out.ts], dim=-2), dim=-2).values
batch_size, *_shape, _t0_dim = vrange.t0.shape
_, *ts_shape, _ts_dim = ts.shape
# 2. Get the points along the ray and query the model
directions = torch.broadcast_to(direction.unsqueeze(-2), [batch_size, *ts_shape, 3])
positions = origin.unsqueeze(-2) + ts * directions
directions = directions.to(self.mlp.dtype)
positions = positions.to(self.mlp.dtype)
optional_directions = directions if render_with_direction else None
model_out = self.mlp(
position=positions,
direction=optional_directions,
ts=ts,
nerf_level="coarse" if prev_model_out is None else "fine",
)
# 3. Integrate the model results
channels, weights, transmittance = integrate_samples(
vrange, model_out.ts, model_out.density, model_out.channels
)
# 4. Clean up results that do not intersect with the volume.
transmittance = torch.where(vrange.intersected, transmittance, torch.ones_like(transmittance))
channels = torch.where(vrange.intersected, channels, torch.zeros_like(channels))
# 5. integration to infinity (e.g. [t[-1], math.inf]) that is evaluated by the void_model (i.e. we consider this space to be empty).
channels = channels + transmittance * self.void(origin)
weighted_sampler = ImportanceRaySampler(vrange, ts=model_out.ts, weights=weights)
return channels, weighted_sampler, model_out
@torch.no_grad()
def decode(
self,
latents,
device,
size: int = 64,
ray_batch_size: int = 4096,
n_coarse_samples=64,
n_fine_samples=128,
):
# project the the paramters from the generated latents
projected_params = self.params_proj(latents)
# update the mlp layers of the renderer
for name, param in self.mlp.state_dict().items():
if f"nerstf.{name}" in projected_params.keys():
param.copy_(projected_params[f"nerstf.{name}"].squeeze(0))
# create cameras object
camera = create_pan_cameras(size)
rays = camera.camera_rays
rays = rays.to(device)
n_batches = rays.shape[1] // ray_batch_size
coarse_sampler = StratifiedRaySampler()
images = []
for idx in range(n_batches):
rays_batch = rays[:, idx * ray_batch_size : (idx + 1) * ray_batch_size]
# render rays with coarse, stratified samples.
_, fine_sampler, coarse_model_out = self.render_rays(rays_batch, coarse_sampler, n_coarse_samples)
# Then, render with additional importance-weighted ray samples.
channels, _, _ = self.render_rays(
rays_batch, fine_sampler, n_fine_samples, prev_model_out=coarse_model_out
)
images.append(channels)
images = torch.cat(images, dim=1)
images = images.view(*camera.shape, camera.height, camera.width, -1).squeeze(0)
return images
|