Spaces:
Runtime error
Runtime error
File size: 13,012 Bytes
cc0dd3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
# Copyright (c) OpenMMLab. All rights reserved.
import math
from itertools import groupby
from typing import Dict, List, Optional, Tuple, Union
import cv2
import mmcv
import numpy as np
from ...utils import FrameMessage
from ..base_visualizer_node import BaseVisualizerNode
from ..registry import NODES
def imshow_bboxes(img,
bboxes,
labels=None,
colors='green',
text_color='white',
thickness=1,
font_scale=0.5):
"""Draw bboxes with labels (optional) on an image. This is a wrapper of
mmcv.imshow_bboxes.
Args:
img (str or ndarray): The image to be displayed.
bboxes (ndarray): ndarray of shape (k, 4), each row is a bbox in
format [x1, y1, x2, y2].
labels (str or list[str], optional): labels of each bbox.
colors (list[str or tuple or :obj:`Color`]): A list of colors.
text_color (str or tuple or :obj:`Color`): Color of texts.
thickness (int): Thickness of lines.
font_scale (float): Font scales of texts.
Returns:
ndarray: The image with bboxes drawn on it.
"""
# adapt to mmcv.imshow_bboxes input format
bboxes = np.split(
bboxes, bboxes.shape[0], axis=0) if bboxes.shape[0] > 0 else []
if not isinstance(colors, list):
colors = [colors for _ in range(len(bboxes))]
colors = [mmcv.color_val(c) for c in colors]
assert len(bboxes) == len(colors)
img = mmcv.imshow_bboxes(
img,
bboxes,
colors,
top_k=-1,
thickness=thickness,
show=False,
out_file=None)
if labels is not None:
if not isinstance(labels, list):
labels = [labels for _ in range(len(bboxes))]
assert len(labels) == len(bboxes)
for bbox, label, color in zip(bboxes, labels, colors):
if label is None:
continue
bbox_int = bbox[0, :4].astype(np.int32)
# roughly estimate the proper font size
text_size, text_baseline = cv2.getTextSize(label,
cv2.FONT_HERSHEY_DUPLEX,
font_scale, thickness)
text_x1 = bbox_int[0]
text_y1 = max(0, bbox_int[1] - text_size[1] - text_baseline)
text_x2 = bbox_int[0] + text_size[0]
text_y2 = text_y1 + text_size[1] + text_baseline
cv2.rectangle(img, (text_x1, text_y1), (text_x2, text_y2), color,
cv2.FILLED)
cv2.putText(img, label, (text_x1, text_y2 - text_baseline),
cv2.FONT_HERSHEY_DUPLEX, font_scale,
mmcv.color_val(text_color), thickness)
return img
def imshow_keypoints(img,
pose_result,
skeleton=None,
kpt_score_thr=0.3,
pose_kpt_color=None,
pose_link_color=None,
radius=4,
thickness=1,
show_keypoint_weight=False):
"""Draw keypoints and links on an image.
Args:
img (str or Tensor): The image to draw poses on. If an image array
is given, id will be modified in-place.
pose_result (list[kpts]): The poses to draw. Each element kpts is
a set of K keypoints as an Kx3 numpy.ndarray, where each
keypoint is represented as x, y, score.
kpt_score_thr (float, optional): Minimum score of keypoints
to be shown. Default: 0.3.
pose_kpt_color (np.array[Nx3]`): Color of N keypoints. If None,
the keypoint will not be drawn.
pose_link_color (np.array[Mx3]): Color of M links. If None, the
links will not be drawn.
thickness (int): Thickness of lines.
"""
img = mmcv.imread(img)
img_h, img_w, _ = img.shape
for kpts in pose_result:
kpts = np.array(kpts, copy=False)
# draw each point on image
if pose_kpt_color is not None:
assert len(pose_kpt_color) == len(kpts)
for kid, kpt in enumerate(kpts):
x_coord, y_coord, kpt_score = int(kpt[0]), int(kpt[1]), kpt[2]
if kpt_score < kpt_score_thr or pose_kpt_color[kid] is None:
# skip the point that should not be drawn
continue
color = tuple(int(c) for c in pose_kpt_color[kid])
if show_keypoint_weight:
img_copy = img.copy()
cv2.circle(img_copy, (int(x_coord), int(y_coord)), radius,
color, -1)
transparency = max(0, min(1, kpt_score))
cv2.addWeighted(
img_copy,
transparency,
img,
1 - transparency,
0,
dst=img)
else:
cv2.circle(img, (int(x_coord), int(y_coord)), radius,
color, -1)
# draw links
if skeleton is not None and pose_link_color is not None:
assert len(pose_link_color) == len(skeleton)
for sk_id, sk in enumerate(skeleton):
pos1 = (int(kpts[sk[0], 0]), int(kpts[sk[0], 1]))
pos2 = (int(kpts[sk[1], 0]), int(kpts[sk[1], 1]))
if (pos1[0] <= 0 or pos1[0] >= img_w or pos1[1] <= 0
or pos1[1] >= img_h or pos2[0] <= 0 or pos2[0] >= img_w
or pos2[1] <= 0 or pos2[1] >= img_h
or kpts[sk[0], 2] < kpt_score_thr
or kpts[sk[1], 2] < kpt_score_thr
or pose_link_color[sk_id] is None):
# skip the link that should not be drawn
continue
color = tuple(int(c) for c in pose_link_color[sk_id])
if show_keypoint_weight:
img_copy = img.copy()
X = (pos1[0], pos2[0])
Y = (pos1[1], pos2[1])
mX = np.mean(X)
mY = np.mean(Y)
length = ((Y[0] - Y[1])**2 + (X[0] - X[1])**2)**0.5
angle = math.degrees(math.atan2(Y[0] - Y[1], X[0] - X[1]))
stickwidth = 2
polygon = cv2.ellipse2Poly(
(int(mX), int(mY)), (int(length / 2), int(stickwidth)),
int(angle), 0, 360, 1)
cv2.fillConvexPoly(img_copy, polygon, color)
transparency = max(
0, min(1, 0.5 * (kpts[sk[0], 2] + kpts[sk[1], 2])))
cv2.addWeighted(
img_copy,
transparency,
img,
1 - transparency,
0,
dst=img)
else:
cv2.line(img, pos1, pos2, color, thickness=thickness)
return img
@NODES.register_module()
class ObjectVisualizerNode(BaseVisualizerNode):
"""Visualize the bounding box and keypoints of objects.
Args:
name (str): The node name (also thread name)
input_buffer (str): The name of the input buffer
output_buffer (str|list): The name(s) of the output buffer(s)
enable_key (str|int, optional): Set a hot-key to toggle enable/disable
of the node. If an int value is given, it will be treated as an
ascii code of a key. Please note: (1) If ``enable_key`` is set,
the ``bypass()`` method need to be overridden to define the node
behavior when disabled; (2) Some hot-keys are reserved for
particular use. For example: 'q', 'Q' and 27 are used for exiting.
Default: ``None``
enable (bool): Default enable/disable status. Default: ``True``
show_bbox (bool): Set ``True`` to show the bboxes of detection
objects. Default: ``True``
show_keypoint (bool): Set ``True`` to show the pose estimation
results. Default: ``True``
must_have_bbox (bool): Only show objects with keypoints.
Default: ``False``
kpt_thr (float): The threshold of keypoint score. Default: 0.3
radius (int): The radius of keypoint. Default: 4
thickness (int): The thickness of skeleton. Default: 2
bbox_color (str|tuple|dict): The color of bboxes. If a single color is
given (a str like 'green' or a BGR tuple like (0, 255, 0)), it
will be used for all bboxes. If a dict is given, it will be used
as a map from class labels to bbox colors. If not given, a default
color map will be used. Default: ``None``
Example::
>>> cfg = dict(
... type='ObjectVisualizerNode',
... name='object visualizer',
... enable_key='v',
... enable=True,
... show_bbox=True,
... must_have_keypoint=False,
... show_keypoint=True,
... input_buffer='frame',
... output_buffer='vis')
>>> from mmpose.apis.webcam.nodes import NODES
>>> node = NODES.build(cfg)
"""
default_bbox_color = {
'person': (148, 139, 255),
'cat': (255, 255, 0),
'dog': (255, 255, 0),
}
def __init__(self,
name: str,
input_buffer: str,
output_buffer: Union[str, List[str]],
enable_key: Optional[Union[str, int]] = None,
enable: bool = True,
show_bbox: bool = True,
show_keypoint: bool = True,
must_have_keypoint: bool = False,
kpt_thr: float = 0.3,
radius: int = 4,
thickness: int = 2,
bbox_color: Optional[Union[str, Tuple, Dict]] = 'green'):
super().__init__(
name=name,
input_buffer=input_buffer,
output_buffer=output_buffer,
enable_key=enable_key,
enable=enable)
self.kpt_thr = kpt_thr
self.bbox_color = bbox_color
self.show_bbox = show_bbox
self.show_keypoint = show_keypoint
self.must_have_keypoint = must_have_keypoint
self.radius = radius
self.thickness = thickness
def _draw_bbox(self, canvas: np.ndarray, input_msg: FrameMessage):
"""Draw object bboxes."""
if self.must_have_keypoint:
objects = input_msg.get_objects(
lambda x: 'bbox' in x and 'keypoints' in x)
else:
objects = input_msg.get_objects(lambda x: 'bbox' in x)
# return if there is no detected objects
if not objects:
return canvas
bboxes = [obj['bbox'] for obj in objects]
labels = [obj.get('label', None) for obj in objects]
default_color = (0, 255, 0)
# Get bbox colors
if isinstance(self.bbox_color, dict):
colors = [
self.bbox_color.get(label, default_color) for label in labels
]
else:
colors = self.bbox_color
imshow_bboxes(
canvas,
np.vstack(bboxes),
labels=labels,
colors=colors,
text_color='white',
font_scale=0.5)
return canvas
def _draw_keypoint(self, canvas: np.ndarray, input_msg: FrameMessage):
"""Draw object keypoints."""
objects = input_msg.get_objects(lambda x: 'pose_model_cfg' in x)
# return if there is no object with keypoints
if not objects:
return canvas
for model_cfg, group in groupby(objects,
lambda x: x['pose_model_cfg']):
dataset_info = objects[0]['dataset_meta']
keypoints = [
np.concatenate(
(obj['keypoints'], obj['keypoint_scores'][:, None]),
axis=1) for obj in group
]
imshow_keypoints(
canvas,
keypoints,
skeleton=dataset_info['skeleton_links'],
kpt_score_thr=self.kpt_thr,
pose_kpt_color=dataset_info['keypoint_colors'],
pose_link_color=dataset_info['skeleton_link_colors'],
radius=self.radius,
thickness=self.thickness)
return canvas
def draw(self, input_msg: FrameMessage) -> np.ndarray:
canvas = input_msg.get_image()
if self.show_bbox:
canvas = self._draw_bbox(canvas, input_msg)
if self.show_keypoint:
canvas = self._draw_keypoint(canvas, input_msg)
return canvas
|