Spaces:
Runtime error
Runtime error
File size: 11,425 Bytes
cc0dd3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
# Copyright (c) OpenMMLab. All rights reserved.
import importlib
import os
import os.path as osp
import sys
import time
from contextlib import contextmanager
from typing import List, Optional, Tuple
from urllib.parse import urlparse
from urllib.request import urlopen
import cv2
import numpy as np
from mmengine import mkdir_or_exist
from torch.hub import HASH_REGEX, download_url_to_file
@contextmanager
def limit_max_fps(fps: float):
"""A context manager to limit maximum frequence of entering the context.
Args:
fps (float): The maximum frequence of entering the context
Example::
>>> from mmpose.apis.webcam.utils import limit_max_fps
>>> import cv2
>>> while True:
... with limit_max_fps(20):
... cv2.imshow(img) # display image at most 20 fps
"""
t_start = time.time()
try:
yield
finally:
t_end = time.time()
if fps is not None:
t_sleep = 1.0 / fps - t_end + t_start
if t_sleep > 0:
time.sleep(t_sleep)
def _is_url(filename: str) -> bool:
"""Check if the file is a url link.
Args:
filename (str): the file name or url link
Returns:
bool: is url or not.
"""
prefixes = ['http://', 'https://']
for p in prefixes:
if filename.startswith(p):
return True
return False
def load_image_from_disk_or_url(filename: str,
readFlag: int = cv2.IMREAD_COLOR
) -> np.ndarray:
"""Load an image file, from disk or url.
Args:
filename (str): file name on the disk or url link
readFlag (int): readFlag for imdecode. Default: cv2.IMREAD_COLOR
Returns:
np.ndarray: A loaded image
"""
if _is_url(filename):
# download the image, convert it to a NumPy array, and then read
# it into OpenCV format
resp = urlopen(filename)
image = np.asarray(bytearray(resp.read()), dtype='uint8')
image = cv2.imdecode(image, readFlag)
return image
else:
image = cv2.imread(filename, readFlag)
return image
def get_cached_file_path(url: str,
save_dir: str,
progress: bool = True,
check_hash: bool = False,
file_name: Optional[str] = None) -> str:
r"""Loads the Torch serialized object at the given URL.
If downloaded file is a zip file, it will be automatically decompressed
If the object is already present in `model_dir`, it's deserialized and
returned.
The default value of ``model_dir`` is ``<hub_dir>/checkpoints`` where
``hub_dir`` is the directory returned by :func:`~torch.hub.get_dir`.
Args:
url (str): URL of the object to download
save_dir (str): directory in which to save the object
progress (bool): whether or not to display a progress bar
to stderr. Default: ``True``
check_hash(bool): If True, the filename part of the URL
should follow the naming convention ``filename-<sha256>.ext``
where ``<sha256>`` is the first eight or more digits of the
SHA256 hash of the contents of the file. The hash is used to
ensure unique names and to verify the contents of the file.
Default: ``False``
file_name (str, optional): name for the downloaded file. Filename
from ``url`` will be used if not set. Default: ``None``.
Returns:
str: The path to the cached file.
"""
mkdir_or_exist(save_dir)
parts = urlparse(url)
filename = os.path.basename(parts.path)
if file_name is not None:
filename = file_name
cached_file = os.path.join(save_dir, filename)
if not os.path.exists(cached_file):
sys.stderr.write('Downloading: "{}" to {}\n'.format(url, cached_file))
hash_prefix = None
if check_hash:
r = HASH_REGEX.search(filename) # r is Optional[Match[str]]
hash_prefix = r.group(1) if r else None
download_url_to_file(url, cached_file, hash_prefix, progress=progress)
return cached_file
def screen_matting(img: np.ndarray,
color_low: Optional[Tuple] = None,
color_high: Optional[Tuple] = None,
color: Optional[str] = None) -> np.ndarray:
"""Get screen matting mask.
Args:
img (np.ndarray): Image data.
color_low (tuple): Lower limit (b, g, r).
color_high (tuple): Higher limit (b, g, r).
color (str): Support colors include:
- 'green' or 'g'
- 'blue' or 'b'
- 'black' or 'k'
- 'white' or 'w'
Returns:
np.ndarray: A mask with the same shape of the input image. The value
is 0 at the pixels in the matting color range, and 1 everywhere else.
"""
if color_high is None or color_low is None:
if color is not None:
if color.lower() == 'g' or color.lower() == 'green':
color_low = (0, 200, 0)
color_high = (60, 255, 60)
elif color.lower() == 'b' or color.lower() == 'blue':
color_low = (230, 0, 0)
color_high = (255, 40, 40)
elif color.lower() == 'k' or color.lower() == 'black':
color_low = (0, 0, 0)
color_high = (40, 40, 40)
elif color.lower() == 'w' or color.lower() == 'white':
color_low = (230, 230, 230)
color_high = (255, 255, 255)
else:
raise NotImplementedError(f'Not supported color: {color}.')
else:
raise ValueError(
'color or color_high | color_low should be given.')
mask = cv2.inRange(img, np.array(color_low), np.array(color_high)) == 0
return mask.astype(np.uint8)
def expand_and_clamp(box: List, im_shape: Tuple, scale: float = 1.25) -> List:
"""Expand the bbox and clip it to fit the image shape.
Args:
box (list): x1, y1, x2, y2
im_shape (tuple): image shape (h, w, c)
scale (float): expand ratio
Returns:
list: x1, y1, x2, y2
"""
x1, y1, x2, y2 = box[:4]
w = x2 - x1
h = y2 - y1
deta_w = w * (scale - 1) / 2
deta_h = h * (scale - 1) / 2
x1, y1, x2, y2 = x1 - deta_w, y1 - deta_h, x2 + deta_w, y2 + deta_h
img_h, img_w = im_shape[:2]
x1 = min(max(0, int(x1)), img_w - 1)
y1 = min(max(0, int(y1)), img_h - 1)
x2 = min(max(0, int(x2)), img_w - 1)
y2 = min(max(0, int(y2)), img_h - 1)
return [x1, y1, x2, y2]
def _find_bbox(mask):
"""Find the bounding box for the mask.
Args:
mask (ndarray): Mask.
Returns:
list(4, ): Returned box (x1, y1, x2, y2).
"""
mask_shape = mask.shape
if len(mask_shape) == 3:
assert mask_shape[-1] == 1, 'the channel of the mask should be 1.'
elif len(mask_shape) == 2:
pass
else:
NotImplementedError()
h, w = mask_shape[:2]
mask_w = mask.sum(0)
mask_h = mask.sum(1)
left = 0
right = w - 1
up = 0
down = h - 1
for i in range(w):
if mask_w[i] > 0:
break
left += 1
for i in range(w - 1, left, -1):
if mask_w[i] > 0:
break
right -= 1
for i in range(h):
if mask_h[i] > 0:
break
up += 1
for i in range(h - 1, up, -1):
if mask_h[i] > 0:
break
down -= 1
return [left, up, right, down]
def copy_and_paste(
img: np.ndarray,
background_img: np.ndarray,
mask: np.ndarray,
bbox: Optional[List] = None,
effect_region: Tuple = (0.2, 0.2, 0.8, 0.8),
min_size: Tuple = (20, 20)
) -> np.ndarray:
"""Copy the image region and paste to the background.
Args:
img (np.ndarray): Image data.
background_img (np.ndarray): Background image data.
mask (ndarray): instance segmentation result.
bbox (list, optional): instance bbox in (x1, y1, x2, y2). If not
given, the bbox will be obtained by ``_find_bbox()``. Default:
``None``
effect_region (tuple): The region to apply mask, the coordinates
are normalized (x1, y1, x2, y2). Default: (0.2, 0.2, 0.8, 0.8)
min_size (tuple): The minimum region size (w, h) in pixels.
Default: (20, 20)
Returns:
np.ndarray: The background with pasted image region.
"""
background_img = background_img.copy()
background_h, background_w = background_img.shape[:2]
region_h = (effect_region[3] - effect_region[1]) * background_h
region_w = (effect_region[2] - effect_region[0]) * background_w
region_aspect_ratio = region_w / region_h
if bbox is None:
bbox = _find_bbox(mask)
instance_w = bbox[2] - bbox[0]
instance_h = bbox[3] - bbox[1]
if instance_w > min_size[0] and instance_h > min_size[1]:
aspect_ratio = instance_w / instance_h
if region_aspect_ratio > aspect_ratio:
resize_rate = region_h / instance_h
else:
resize_rate = region_w / instance_w
mask_inst = mask[int(bbox[1]):int(bbox[3]), int(bbox[0]):int(bbox[2])]
img_inst = img[int(bbox[1]):int(bbox[3]), int(bbox[0]):int(bbox[2])]
img_inst = cv2.resize(
img_inst.astype('float32'),
(int(resize_rate * instance_w), int(resize_rate * instance_h)))
img_inst = img_inst.astype(background_img.dtype)
mask_inst = cv2.resize(
mask_inst.astype('float32'),
(int(resize_rate * instance_w), int(resize_rate * instance_h)),
interpolation=cv2.INTER_NEAREST)
mask_ids = list(np.where(mask_inst == 1))
mask_ids[1] += int(effect_region[0] * background_w)
mask_ids[0] += int(effect_region[1] * background_h)
background_img[tuple(mask_ids)] = img_inst[np.where(mask_inst == 1)]
return background_img
def is_image_file(path: str) -> bool:
"""Check if a path is an image file by its extension.
Args:
path (str): The image path.
Returns:
bool: Weather the path is an image file.
"""
if isinstance(path, str):
if path.lower().endswith(('.png', '.jpg', '.jpeg', '.tiff', '.bmp')):
return True
return False
def get_config_path(path: str, module_name: str):
"""Get config path from an OpenMMLab codebase.
If the path is an existing file, it will be directly returned. If the file
doesn't exist, it will be searched in the 'configs' folder of the
specified module.
Args:
path (str): the path of the config file
module_name (str): The module name of an OpenMMLab codebase
Returns:
str: The config file path.
Example::
>>> path = 'configs/_base_/filters/one_euro.py'
>>> get_config_path(path, 'mmpose')
'/home/mmpose/configs/_base_/filters/one_euro.py'
"""
if osp.isfile(path):
return path
module = importlib.import_module(module_name)
module_dir = osp.dirname(module.__file__)
path_in_module = osp.join(module_dir, '.mim', path)
if not osp.isfile(path_in_module):
raise FileNotFoundError(f'Can not find the config file "{path}"')
return path_in_module
|