Spaces:
Runtime error
Runtime error
File size: 10,341 Bytes
cc0dd3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
# Copyright (c) OpenMMLab. All rights reserved.
import random
from typing import Optional, Tuple
import numpy as np
from mmpose.registry import KEYPOINT_CODECS
from .base import BaseKeypointCodec
from .utils import (generate_gaussian_heatmaps, get_diagonal_lengths,
get_instance_bbox, get_instance_root)
from .utils.post_processing import get_heatmap_maximum
from .utils.refinement import refine_keypoints
@KEYPOINT_CODECS.register_module()
class DecoupledHeatmap(BaseKeypointCodec):
"""Encode/decode keypoints with the method introduced in the paper CID.
See the paper Contextual Instance Decoupling for Robust Multi-Person
Pose Estimation`_ by Wang et al (2022) for details
Note:
- instance number: N
- keypoint number: K
- keypoint dimension: D
- image size: [w, h]
- heatmap size: [W, H]
Encoded:
- heatmaps (np.ndarray): The coupled heatmap in shape
(1+K, H, W) where [W, H] is the `heatmap_size`.
- instance_heatmaps (np.ndarray): The decoupled heatmap in shape
(M*K, H, W) where M is the number of instances.
- keypoint_weights (np.ndarray): The weight for heatmaps in shape
(M*K).
- instance_coords (np.ndarray): The coordinates of instance roots
in shape (M, 2)
Args:
input_size (tuple): Image size in [w, h]
heatmap_size (tuple): Heatmap size in [W, H]
root_type (str): The method to generate the instance root. Options
are:
- ``'kpt_center'``: Average coordinate of all visible keypoints.
- ``'bbox_center'``: Center point of bounding boxes outlined by
all visible keypoints.
Defaults to ``'kpt_center'``
heatmap_min_overlap (float): Minimum overlap rate among instances.
Used when calculating sigmas for instances. Defaults to 0.7
background_weight (float): Loss weight of background pixels.
Defaults to 0.1
encode_max_instances (int): The maximum number of instances
to encode for each sample. Defaults to 30
.. _`CID`: https://openaccess.thecvf.com/content/CVPR2022/html/Wang_
Contextual_Instance_Decoupling_for_Robust_Multi-Person_Pose_Estimation_
CVPR_2022_paper.html
"""
# DecoupledHeatmap requires bounding boxes to determine the size of each
# instance, so that it can assign varying sigmas based on their size
auxiliary_encode_keys = {'bbox'}
def __init__(
self,
input_size: Tuple[int, int],
heatmap_size: Tuple[int, int],
root_type: str = 'kpt_center',
heatmap_min_overlap: float = 0.7,
encode_max_instances: int = 30,
):
super().__init__()
self.input_size = input_size
self.heatmap_size = heatmap_size
self.root_type = root_type
self.encode_max_instances = encode_max_instances
self.heatmap_min_overlap = heatmap_min_overlap
self.scale_factor = (np.array(input_size) /
heatmap_size).astype(np.float32)
def _get_instance_wise_sigmas(
self,
bbox: np.ndarray,
) -> np.ndarray:
"""Get sigma values for each instance according to their size.
Args:
bbox (np.ndarray): Bounding box in shape (N, 4, 2)
Returns:
np.ndarray: Array containing the sigma values for each instance.
"""
sigmas = np.zeros((bbox.shape[0], ), dtype=np.float32)
heights = np.sqrt(np.power(bbox[:, 0] - bbox[:, 1], 2).sum(axis=-1))
widths = np.sqrt(np.power(bbox[:, 0] - bbox[:, 2], 2).sum(axis=-1))
for i in range(bbox.shape[0]):
h, w = heights[i], widths[i]
# compute sigma for each instance
# condition 1
a1, b1 = 1, h + w
c1 = w * h * (1 - self.heatmap_min_overlap) / (
1 + self.heatmap_min_overlap)
sq1 = np.sqrt(b1**2 - 4 * a1 * c1)
r1 = (b1 + sq1) / 2
# condition 2
a2 = 4
b2 = 2 * (h + w)
c2 = (1 - self.heatmap_min_overlap) * w * h
sq2 = np.sqrt(b2**2 - 4 * a2 * c2)
r2 = (b2 + sq2) / 2
# condition 3
a3 = 4 * self.heatmap_min_overlap
b3 = -2 * self.heatmap_min_overlap * (h + w)
c3 = (self.heatmap_min_overlap - 1) * w * h
sq3 = np.sqrt(b3**2 - 4 * a3 * c3)
r3 = (b3 + sq3) / 2
sigmas[i] = min(r1, r2, r3) / 3
return sigmas
def encode(self,
keypoints: np.ndarray,
keypoints_visible: Optional[np.ndarray] = None,
bbox: Optional[np.ndarray] = None) -> dict:
"""Encode keypoints into heatmaps.
Args:
keypoints (np.ndarray): Keypoint coordinates in shape (N, K, D)
keypoints_visible (np.ndarray): Keypoint visibilities in shape
(N, K)
bbox (np.ndarray): Bounding box in shape (N, 8) which includes
coordinates of 4 corners.
Returns:
dict:
- heatmaps (np.ndarray): The coupled heatmap in shape
(1+K, H, W) where [W, H] is the `heatmap_size`.
- instance_heatmaps (np.ndarray): The decoupled heatmap in shape
(N*K, H, W) where M is the number of instances.
- keypoint_weights (np.ndarray): The weight for heatmaps in shape
(N*K).
- instance_coords (np.ndarray): The coordinates of instance roots
in shape (N, 2)
"""
if keypoints_visible is None:
keypoints_visible = np.ones(keypoints.shape[:2], dtype=np.float32)
if bbox is None:
# generate pseudo bbox via visible keypoints
bbox = get_instance_bbox(keypoints, keypoints_visible)
bbox = np.tile(bbox, 2).reshape(-1, 4, 2)
# corner order: left_top, left_bottom, right_top, right_bottom
bbox[:, 1:3, 0] = bbox[:, 0:2, 0]
# keypoint coordinates in heatmap
_keypoints = keypoints / self.scale_factor
_bbox = bbox.reshape(-1, 4, 2) / self.scale_factor
# compute the root and scale of each instance
roots, roots_visible = get_instance_root(_keypoints, keypoints_visible,
self.root_type)
sigmas = self._get_instance_wise_sigmas(_bbox)
# generate global heatmaps
heatmaps, keypoint_weights = generate_gaussian_heatmaps(
heatmap_size=self.heatmap_size,
keypoints=np.concatenate((_keypoints, roots[:, None]), axis=1),
keypoints_visible=np.concatenate(
(keypoints_visible, roots_visible[:, None]), axis=1),
sigma=sigmas)
roots_visible = keypoint_weights[:, -1]
# select instances
inst_roots, inst_indices = [], []
diagonal_lengths = get_diagonal_lengths(_keypoints, keypoints_visible)
for i in np.argsort(diagonal_lengths):
if roots_visible[i] < 1:
continue
# rand root point in 3x3 grid
x, y = roots[i] + np.random.randint(-1, 2, (2, ))
x = max(0, min(x, self.heatmap_size[0] - 1))
y = max(0, min(y, self.heatmap_size[1] - 1))
if (x, y) not in inst_roots:
inst_roots.append((x, y))
inst_indices.append(i)
if len(inst_indices) > self.encode_max_instances:
rand_indices = random.sample(
range(len(inst_indices)), self.encode_max_instances)
inst_roots = [inst_roots[i] for i in rand_indices]
inst_indices = [inst_indices[i] for i in rand_indices]
# generate instance-wise heatmaps
inst_heatmaps, inst_heatmap_weights = [], []
for i in inst_indices:
inst_heatmap, inst_heatmap_weight = generate_gaussian_heatmaps(
heatmap_size=self.heatmap_size,
keypoints=_keypoints[i:i + 1],
keypoints_visible=keypoints_visible[i:i + 1],
sigma=sigmas[i].item())
inst_heatmaps.append(inst_heatmap)
inst_heatmap_weights.append(inst_heatmap_weight)
if len(inst_indices) > 0:
inst_heatmaps = np.concatenate(inst_heatmaps)
inst_heatmap_weights = np.concatenate(inst_heatmap_weights)
inst_roots = np.array(inst_roots, dtype=np.int32)
else:
inst_heatmaps = np.empty((0, *self.heatmap_size[::-1]))
inst_heatmap_weights = np.empty((0, ))
inst_roots = np.empty((0, 2), dtype=np.int32)
encoded = dict(
heatmaps=heatmaps,
instance_heatmaps=inst_heatmaps,
keypoint_weights=inst_heatmap_weights,
instance_coords=inst_roots)
return encoded
def decode(self, instance_heatmaps: np.ndarray,
instance_scores: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""Decode keypoint coordinates from decoupled heatmaps. The decoded
keypoint coordinates are in the input image space.
Args:
instance_heatmaps (np.ndarray): Heatmaps in shape (N, K, H, W)
instance_scores (np.ndarray): Confidence of instance roots
prediction in shape (N, 1)
Returns:
tuple:
- keypoints (np.ndarray): Decoded keypoint coordinates in shape
(N, K, D)
- scores (np.ndarray): The keypoint scores in shape (N, K). It
usually represents the confidence of the keypoint prediction
"""
keypoints, keypoint_scores = [], []
for i in range(instance_heatmaps.shape[0]):
heatmaps = instance_heatmaps[i].copy()
kpts, scores = get_heatmap_maximum(heatmaps)
keypoints.append(refine_keypoints(kpts[None], heatmaps))
keypoint_scores.append(scores[None])
keypoints = np.concatenate(keypoints)
# Restore the keypoint scale
keypoints = keypoints * self.scale_factor
keypoint_scores = np.concatenate(keypoint_scores)
keypoint_scores *= instance_scores
return keypoints, keypoint_scores
|