Spaces:
Runtime error
Runtime error
File size: 12,184 Bytes
cc0dd3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Optional, Tuple, Union
import numpy as np
import torch
from torch import Tensor
from mmpose.registry import KEYPOINT_CODECS
from .base import BaseKeypointCodec
from .utils import (batch_heatmap_nms, generate_displacement_heatmap,
generate_gaussian_heatmaps, get_diagonal_lengths,
get_instance_root)
@KEYPOINT_CODECS.register_module()
class SPR(BaseKeypointCodec):
"""Encode/decode keypoints with Structured Pose Representation (SPR).
See the paper `Single-stage multi-person pose machines`_
by Nie et al (2017) for details
Note:
- instance number: N
- keypoint number: K
- keypoint dimension: D
- image size: [w, h]
- heatmap size: [W, H]
Encoded:
- heatmaps (np.ndarray): The generated heatmap in shape (1, H, W)
where [W, H] is the `heatmap_size`. If the keypoint heatmap is
generated together, the output heatmap shape is (K+1, H, W)
- heatmap_weights (np.ndarray): The target weights for heatmaps which
has same shape with heatmaps.
- displacements (np.ndarray): The dense keypoint displacement in
shape (K*2, H, W).
- displacement_weights (np.ndarray): The target weights for heatmaps
which has same shape with displacements.
Args:
input_size (tuple): Image size in [w, h]
heatmap_size (tuple): Heatmap size in [W, H]
sigma (float or tuple, optional): The sigma values of the Gaussian
heatmaps. If sigma is a tuple, it includes both sigmas for root
and keypoint heatmaps. ``None`` means the sigmas are computed
automatically from the heatmap size. Defaults to ``None``
generate_keypoint_heatmaps (bool): Whether to generate Gaussian
heatmaps for each keypoint. Defaults to ``False``
root_type (str): The method to generate the instance root. Options
are:
- ``'kpt_center'``: Average coordinate of all visible keypoints.
- ``'bbox_center'``: Center point of bounding boxes outlined by
all visible keypoints.
Defaults to ``'kpt_center'``
minimal_diagonal_length (int or float): The threshold of diagonal
length of instance bounding box. Small instances will not be
used in training. Defaults to 32
background_weight (float): Loss weight of background pixels.
Defaults to 0.1
decode_thr (float): The threshold of keypoint response value in
heatmaps. Defaults to 0.01
decode_nms_kernel (int): The kernel size of the NMS during decoding,
which should be an odd integer. Defaults to 5
decode_max_instances (int): The maximum number of instances
to decode. Defaults to 30
.. _`Single-stage multi-person pose machines`:
https://arxiv.org/abs/1908.09220
"""
def __init__(
self,
input_size: Tuple[int, int],
heatmap_size: Tuple[int, int],
sigma: Optional[Union[float, Tuple[float]]] = None,
generate_keypoint_heatmaps: bool = False,
root_type: str = 'kpt_center',
minimal_diagonal_length: Union[int, float] = 5,
background_weight: float = 0.1,
decode_nms_kernel: int = 5,
decode_max_instances: int = 30,
decode_thr: float = 0.01,
):
super().__init__()
self.input_size = input_size
self.heatmap_size = heatmap_size
self.generate_keypoint_heatmaps = generate_keypoint_heatmaps
self.root_type = root_type
self.minimal_diagonal_length = minimal_diagonal_length
self.background_weight = background_weight
self.decode_nms_kernel = decode_nms_kernel
self.decode_max_instances = decode_max_instances
self.decode_thr = decode_thr
self.scale_factor = (np.array(input_size) /
heatmap_size).astype(np.float32)
if sigma is None:
sigma = (heatmap_size[0] * heatmap_size[1])**0.5 / 32
if generate_keypoint_heatmaps:
# sigma for root heatmap and keypoint heatmaps
self.sigma = (sigma, sigma // 2)
else:
self.sigma = (sigma, )
else:
if not isinstance(sigma, (tuple, list)):
sigma = (sigma, )
if generate_keypoint_heatmaps:
assert len(sigma) == 2, 'sigma for keypoints must be given ' \
'if `generate_keypoint_heatmaps` ' \
'is True. e.g. sigma=(4, 2)'
self.sigma = sigma
def _get_heatmap_weights(self,
heatmaps,
fg_weight: float = 1,
bg_weight: float = 0):
"""Generate weight array for heatmaps.
Args:
heatmaps (np.ndarray): Root and keypoint (optional) heatmaps
fg_weight (float): Weight for foreground pixels. Defaults to 1.0
bg_weight (float): Weight for background pixels. Defaults to 0.0
Returns:
np.ndarray: Heatmap weight array in the same shape with heatmaps
"""
heatmap_weights = np.ones(heatmaps.shape) * bg_weight
heatmap_weights[heatmaps > 0] = fg_weight
return heatmap_weights
def encode(self,
keypoints: np.ndarray,
keypoints_visible: Optional[np.ndarray] = None) -> dict:
"""Encode keypoints into root heatmaps and keypoint displacement
fields. Note that the original keypoint coordinates should be in the
input image space.
Args:
keypoints (np.ndarray): Keypoint coordinates in shape (N, K, D)
keypoints_visible (np.ndarray): Keypoint visibilities in shape
(N, K)
Returns:
dict:
- heatmaps (np.ndarray): The generated heatmap in shape
(1, H, W) where [W, H] is the `heatmap_size`. If keypoint
heatmaps are generated together, the shape is (K+1, H, W)
- heatmap_weights (np.ndarray): The pixel-wise weight for heatmaps
which has same shape with `heatmaps`
- displacements (np.ndarray): The generated displacement fields in
shape (K*D, H, W). The vector on each pixels represents the
displacement of keypoints belong to the associated instance
from this pixel.
- displacement_weights (np.ndarray): The pixel-wise weight for
displacements which has same shape with `displacements`
"""
if keypoints_visible is None:
keypoints_visible = np.ones(keypoints.shape[:2], dtype=np.float32)
# keypoint coordinates in heatmap
_keypoints = keypoints / self.scale_factor
# compute the root and scale of each instance
roots, roots_visible = get_instance_root(_keypoints, keypoints_visible,
self.root_type)
diagonal_lengths = get_diagonal_lengths(_keypoints, keypoints_visible)
# discard the small instances
roots_visible[diagonal_lengths < self.minimal_diagonal_length] = 0
# generate heatmaps
heatmaps, _ = generate_gaussian_heatmaps(
heatmap_size=self.heatmap_size,
keypoints=roots[:, None],
keypoints_visible=roots_visible[:, None],
sigma=self.sigma[0])
heatmap_weights = self._get_heatmap_weights(
heatmaps, bg_weight=self.background_weight)
if self.generate_keypoint_heatmaps:
keypoint_heatmaps, _ = generate_gaussian_heatmaps(
heatmap_size=self.heatmap_size,
keypoints=_keypoints,
keypoints_visible=keypoints_visible,
sigma=self.sigma[1])
keypoint_heatmaps_weights = self._get_heatmap_weights(
keypoint_heatmaps, bg_weight=self.background_weight)
heatmaps = np.concatenate((keypoint_heatmaps, heatmaps), axis=0)
heatmap_weights = np.concatenate(
(keypoint_heatmaps_weights, heatmap_weights), axis=0)
# generate displacements
displacements, displacement_weights = \
generate_displacement_heatmap(
self.heatmap_size,
_keypoints,
keypoints_visible,
roots,
roots_visible,
diagonal_lengths,
self.sigma[0],
)
encoded = dict(
heatmaps=heatmaps,
heatmap_weights=heatmap_weights,
displacements=displacements,
displacement_weights=displacement_weights)
return encoded
def decode(self, heatmaps: Tensor,
displacements: Tensor) -> Tuple[np.ndarray, np.ndarray]:
"""Decode the keypoint coordinates from heatmaps and displacements. The
decoded keypoint coordinates are in the input image space.
Args:
heatmaps (Tensor): Encoded root and keypoints (optional) heatmaps
in shape (1, H, W) or (K+1, H, W)
displacements (Tensor): Encoded keypoints displacement fields
in shape (K*D, H, W)
Returns:
tuple:
- keypoints (Tensor): Decoded keypoint coordinates in shape
(N, K, D)
- scores (tuple):
- root_scores (Tensor): The root scores in shape (N, )
- keypoint_scores (Tensor): The keypoint scores in
shape (N, K). If keypoint heatmaps are not generated,
`keypoint_scores` will be `None`
"""
# heatmaps, displacements = encoded
_k, h, w = displacements.shape
k = _k // 2
displacements = displacements.view(k, 2, h, w)
# convert displacements to a dense keypoint prediction
y, x = torch.meshgrid(torch.arange(h), torch.arange(w))
regular_grid = torch.stack([x, y], dim=0).to(displacements)
posemaps = (regular_grid[None] + displacements).flatten(2)
# find local maximum on root heatmap
root_heatmap_peaks = batch_heatmap_nms(heatmaps[None, -1:],
self.decode_nms_kernel)
root_scores, pos_idx = root_heatmap_peaks.flatten().topk(
self.decode_max_instances)
mask = root_scores > self.decode_thr
root_scores, pos_idx = root_scores[mask], pos_idx[mask]
keypoints = posemaps[:, :, pos_idx].permute(2, 0, 1).contiguous()
if self.generate_keypoint_heatmaps and heatmaps.shape[0] == 1 + k:
# compute scores for each keypoint
keypoint_scores = self.get_keypoint_scores(heatmaps[:k], keypoints)
else:
keypoint_scores = None
keypoints = torch.cat([
kpt * self.scale_factor[i]
for i, kpt in enumerate(keypoints.split(1, -1))
],
dim=-1)
return keypoints, (root_scores, keypoint_scores)
def get_keypoint_scores(self, heatmaps: Tensor, keypoints: Tensor):
"""Calculate the keypoint scores with keypoints heatmaps and
coordinates.
Args:
heatmaps (Tensor): Keypoint heatmaps in shape (K, H, W)
keypoints (Tensor): Keypoint coordinates in shape (N, K, D)
Returns:
Tensor: Keypoint scores in [N, K]
"""
k, h, w = heatmaps.shape
keypoints = torch.stack((
keypoints[..., 0] / (w - 1) * 2 - 1,
keypoints[..., 1] / (h - 1) * 2 - 1,
),
dim=-1)
keypoints = keypoints.transpose(0, 1).unsqueeze(1).contiguous()
keypoint_scores = torch.nn.functional.grid_sample(
heatmaps.unsqueeze(1), keypoints,
padding_mode='border').view(k, -1).transpose(0, 1).contiguous()
return keypoint_scores
|