File size: 7,031 Bytes
cc0dd3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# Copyright (c) OpenMMLab. All rights reserved.
from itertools import product
from typing import Tuple, Union

import numpy as np


def generate_gaussian_heatmaps(
    heatmap_size: Tuple[int, int],
    keypoints: np.ndarray,
    keypoints_visible: np.ndarray,
    sigma: Union[float, Tuple[float], np.ndarray],
) -> Tuple[np.ndarray, np.ndarray]:
    """Generate gaussian heatmaps of keypoints.

    Args:
        heatmap_size (Tuple[int, int]): Heatmap size in [W, H]
        keypoints (np.ndarray): Keypoint coordinates in shape (N, K, D)
        keypoints_visible (np.ndarray): Keypoint visibilities in shape
            (N, K)
        sigma (float or List[float]): A list of sigma values of the Gaussian
            heatmap for each instance. If sigma is given as a single float
            value, it will be expanded into a tuple

    Returns:
        tuple:
        - heatmaps (np.ndarray): The generated heatmap in shape
            (K, H, W) where [W, H] is the `heatmap_size`
        - keypoint_weights (np.ndarray): The target weights in shape
            (N, K)
    """

    N, K, _ = keypoints.shape
    W, H = heatmap_size

    heatmaps = np.zeros((K, H, W), dtype=np.float32)
    keypoint_weights = keypoints_visible.copy()

    if isinstance(sigma, (int, float)):
        sigma = (sigma, ) * N

    for n in range(N):
        # 3-sigma rule
        radius = sigma[n] * 3

        # xy grid
        gaussian_size = 2 * radius + 1
        x = np.arange(0, gaussian_size, 1, dtype=np.float32)
        y = x[:, None]
        x0 = y0 = gaussian_size // 2

        for k in range(K):
            # skip unlabled keypoints
            if keypoints_visible[n, k] < 0.5:
                continue

            # get gaussian center coordinates
            mu = (keypoints[n, k] + 0.5).astype(np.int64)

            # check that the gaussian has in-bounds part
            left, top = (mu - radius).astype(np.int64)
            right, bottom = (mu + radius + 1).astype(np.int64)

            if left >= W or top >= H or right < 0 or bottom < 0:
                keypoint_weights[n, k] = 0
                continue

            # The gaussian is not normalized,
            # we want the center value to equal 1
            gaussian = np.exp(-((x - x0)**2 + (y - y0)**2) / (2 * sigma[n]**2))

            # valid range in gaussian
            g_x1 = max(0, -left)
            g_x2 = min(W, right) - left
            g_y1 = max(0, -top)
            g_y2 = min(H, bottom) - top

            # valid range in heatmap
            h_x1 = max(0, left)
            h_x2 = min(W, right)
            h_y1 = max(0, top)
            h_y2 = min(H, bottom)

            heatmap_region = heatmaps[k, h_y1:h_y2, h_x1:h_x2]
            gaussian_regsion = gaussian[g_y1:g_y2, g_x1:g_x2]

            _ = np.maximum(
                heatmap_region, gaussian_regsion, out=heatmap_region)

    return heatmaps, keypoint_weights


def generate_unbiased_gaussian_heatmaps(
    heatmap_size: Tuple[int, int],
    keypoints: np.ndarray,
    keypoints_visible: np.ndarray,
    sigma: float,
) -> Tuple[np.ndarray, np.ndarray]:
    """Generate gaussian heatmaps of keypoints using `Dark Pose`_.

    Args:
        heatmap_size (Tuple[int, int]): Heatmap size in [W, H]
        keypoints (np.ndarray): Keypoint coordinates in shape (N, K, D)
        keypoints_visible (np.ndarray): Keypoint visibilities in shape
            (N, K)

    Returns:
        tuple:
        - heatmaps (np.ndarray): The generated heatmap in shape
            (K, H, W) where [W, H] is the `heatmap_size`
        - keypoint_weights (np.ndarray): The target weights in shape
            (N, K)

    .. _`Dark Pose`: https://arxiv.org/abs/1910.06278
    """

    N, K, _ = keypoints.shape
    W, H = heatmap_size

    heatmaps = np.zeros((K, H, W), dtype=np.float32)
    keypoint_weights = keypoints_visible.copy()

    # 3-sigma rule
    radius = sigma * 3

    # xy grid
    x = np.arange(0, W, 1, dtype=np.float32)
    y = np.arange(0, H, 1, dtype=np.float32)[:, None]

    for n, k in product(range(N), range(K)):
        # skip unlabled keypoints
        if keypoints_visible[n, k] < 0.5:
            continue

        mu = keypoints[n, k]
        # check that the gaussian has in-bounds part
        left, top = mu - radius
        right, bottom = mu + radius + 1

        if left >= W or top >= H or right < 0 or bottom < 0:
            keypoint_weights[n, k] = 0
            continue

        gaussian = np.exp(-((x - mu[0])**2 + (y - mu[1])**2) / (2 * sigma**2))

        _ = np.maximum(gaussian, heatmaps[k], out=heatmaps[k])

    return heatmaps, keypoint_weights


def generate_udp_gaussian_heatmaps(
    heatmap_size: Tuple[int, int],
    keypoints: np.ndarray,
    keypoints_visible: np.ndarray,
    sigma: float,
) -> Tuple[np.ndarray, np.ndarray]:
    """Generate gaussian heatmaps of keypoints using `UDP`_.

    Args:
        heatmap_size (Tuple[int, int]): Heatmap size in [W, H]
        keypoints (np.ndarray): Keypoint coordinates in shape (N, K, D)
        keypoints_visible (np.ndarray): Keypoint visibilities in shape
            (N, K)
        sigma (float): The sigma value of the Gaussian heatmap

    Returns:
        tuple:
        - heatmaps (np.ndarray): The generated heatmap in shape
            (K, H, W) where [W, H] is the `heatmap_size`
        - keypoint_weights (np.ndarray): The target weights in shape
            (N, K)

    .. _`UDP`: https://arxiv.org/abs/1911.07524
    """

    N, K, _ = keypoints.shape
    W, H = heatmap_size

    heatmaps = np.zeros((K, H, W), dtype=np.float32)
    keypoint_weights = keypoints_visible.copy()

    # 3-sigma rule
    radius = sigma * 3

    # xy grid
    gaussian_size = 2 * radius + 1
    x = np.arange(0, gaussian_size, 1, dtype=np.float32)
    y = x[:, None]

    for n, k in product(range(N), range(K)):
        # skip unlabled keypoints
        if keypoints_visible[n, k] < 0.5:
            continue

        mu = (keypoints[n, k] + 0.5).astype(np.int64)
        # check that the gaussian has in-bounds part
        left, top = (mu - radius).astype(np.int64)
        right, bottom = (mu + radius + 1).astype(np.int64)

        if left >= W or top >= H or right < 0 or bottom < 0:
            keypoint_weights[n, k] = 0
            continue

        mu_ac = keypoints[n, k]
        x0 = y0 = gaussian_size // 2
        x0 += mu_ac[0] - mu[0]
        y0 += mu_ac[1] - mu[1]
        gaussian = np.exp(-((x - x0)**2 + (y - y0)**2) / (2 * sigma**2))

        # valid range in gaussian
        g_x1 = max(0, -left)
        g_x2 = min(W, right) - left
        g_y1 = max(0, -top)
        g_y2 = min(H, bottom) - top

        # valid range in heatmap
        h_x1 = max(0, left)
        h_x2 = min(W, right)
        h_y1 = max(0, top)
        h_y2 = min(H, bottom)

        heatmap_region = heatmaps[k, h_y1:h_y2, h_x1:h_x2]
        gaussian_regsion = gaussian[g_y1:g_y2, g_x1:g_x2]

        _ = np.maximum(heatmap_region, gaussian_regsion, out=heatmap_region)

    return heatmaps, keypoint_weights