File size: 5,352 Bytes
cc0dd3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# Copyright (c) OpenMMLab. All rights reserved.
from itertools import product
from typing import Tuple

import numpy as np


def generate_offset_heatmap(
    heatmap_size: Tuple[int, int],
    keypoints: np.ndarray,
    keypoints_visible: np.ndarray,
    radius_factor: float,
) -> Tuple[np.ndarray, np.ndarray]:
    """Generate offset heatmaps of keypoints, where each keypoint is
    represented by 3 maps: one pixel-level class label map (1 for keypoint and
    0 for non-keypoint) and 2 pixel-level offset maps for x and y directions
    respectively.

    Args:
        heatmap_size (Tuple[int, int]): Heatmap size in [W, H]
        keypoints (np.ndarray): Keypoint coordinates in shape (N, K, D)
        keypoints_visible (np.ndarray): Keypoint visibilities in shape
            (N, K)
        radius_factor (float): The radius factor of the binary label
            map. The positive region is defined as the neighbor of the
            keypoint with the radius :math:`r=radius_factor*max(W, H)`

    Returns:
        tuple:
        - heatmap (np.ndarray): The generated heatmap in shape
            (K*3, H, W) where [W, H] is the `heatmap_size`
        - keypoint_weights (np.ndarray): The target weights in shape
            (K,)
    """

    N, K, _ = keypoints.shape
    W, H = heatmap_size

    heatmaps = np.zeros((K, 3, H, W), dtype=np.float32)
    keypoint_weights = keypoints_visible.copy()

    # xy grid
    x = np.arange(0, W, 1)
    y = np.arange(0, H, 1)[:, None]

    # positive area radius in the classification map
    radius = radius_factor * max(W, H)

    for n, k in product(range(N), range(K)):
        if keypoints_visible[n, k] < 0.5:
            continue

        mu = keypoints[n, k]

        x_offset = (mu[0] - x) / radius
        y_offset = (mu[1] - y) / radius

        heatmaps[k, 0] = np.where(x_offset**2 + y_offset**2 <= 1, 1., 0.)
        heatmaps[k, 1] = x_offset
        heatmaps[k, 2] = y_offset

    heatmaps = heatmaps.reshape(K * 3, H, W)

    return heatmaps, keypoint_weights


def generate_displacement_heatmap(
    heatmap_size: Tuple[int, int],
    keypoints: np.ndarray,
    keypoints_visible: np.ndarray,
    roots: np.ndarray,
    roots_visible: np.ndarray,
    diagonal_lengths: np.ndarray,
    radius: float,
):
    """Generate displacement heatmaps of keypoints, where each keypoint is
    represented by 3 maps: one pixel-level class label map (1 for keypoint and
    0 for non-keypoint) and 2 pixel-level offset maps for x and y directions
    respectively.

    Args:
        heatmap_size (Tuple[int, int]): Heatmap size in [W, H]
        keypoints (np.ndarray): Keypoint coordinates in shape (N, K, D)
        keypoints_visible (np.ndarray): Keypoint visibilities in shape
            (N, K)
        roots (np.ndarray): Coordinates of instance centers in shape (N, D).
            The displacement fields of each instance will locate around its
            center.
        roots_visible (np.ndarray): Roots visibilities in shape (N,)
        diagonal_lengths (np.ndarray): Diaginal length of the bounding boxes
            of each instance in shape (N,)
        radius (float): The radius factor of the binary label
            map. The positive region is defined as the neighbor of the
            keypoint with the radius :math:`r=radius_factor*max(W, H)`

    Returns:
        tuple:
        - displacements (np.ndarray): The generated displacement map in
            shape (K*2, H, W) where [W, H] is the `heatmap_size`
        - displacement_weights (np.ndarray): The target weights in shape
            (K*2, H, W)
    """
    N, K, _ = keypoints.shape
    W, H = heatmap_size

    displacements = np.zeros((K * 2, H, W), dtype=np.float32)
    displacement_weights = np.zeros((K * 2, H, W), dtype=np.float32)
    instance_size_map = np.zeros((H, W), dtype=np.float32)

    for n in range(N):
        if (roots_visible[n] < 1 or (roots[n, 0] < 0 or roots[n, 1] < 0)
                or (roots[n, 0] >= W or roots[n, 1] >= H)):
            continue

        diagonal_length = diagonal_lengths[n]

        for k in range(K):
            if keypoints_visible[n, k] < 1 or keypoints[n, k, 0] < 0 \
                or keypoints[n, k, 1] < 0 or keypoints[n, k, 0] >= W \
                    or keypoints[n, k, 1] >= H:
                continue

            start_x = max(int(roots[n, 0] - radius), 0)
            start_y = max(int(roots[n, 1] - radius), 0)
            end_x = min(int(roots[n, 0] + radius), W)
            end_y = min(int(roots[n, 1] + radius), H)

            for x in range(start_x, end_x):
                for y in range(start_y, end_y):
                    if displacements[2 * k, y,
                                     x] != 0 or displacements[2 * k + 1, y,
                                                              x] != 0:
                        if diagonal_length > instance_size_map[y, x]:
                            # keep the gt displacement of smaller instance
                            continue

                    displacement_weights[2 * k:2 * k + 2, y,
                                         x] = 1 / diagonal_length
                    displacements[2 * k:2 * k + 2, y,
                                  x] = keypoints[n, k] - [x, y]
                    instance_size_map[y, x] = diagonal_length

    return displacements, displacement_weights