Spaces:
Runtime error
Runtime error
File size: 11,118 Bytes
cc0dd3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
# ------------------------------------------------------------------------------
# Adapted from https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
# and https://github.com/HRNet/DEKR
# Original licence: Copyright (c) Microsoft, under the MIT License.
# ------------------------------------------------------------------------------
from typing import List, Optional
import numpy as np
def nms(dets: np.ndarray, thr: float) -> List[int]:
"""Greedily select boxes with high confidence and overlap <= thr.
Args:
dets (np.ndarray): [[x1, y1, x2, y2, score]].
thr (float): Retain overlap < thr.
Returns:
list: Indexes to keep.
"""
if len(dets) == 0:
return []
x1 = dets[:, 0]
y1 = dets[:, 1]
x2 = dets[:, 2]
y2 = dets[:, 3]
scores = dets[:, 4]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = scores.argsort()[::-1]
keep = []
while len(order) > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
ovr = inter / (areas[i] + areas[order[1:]] - inter)
inds = np.where(ovr <= thr)[0]
order = order[inds + 1]
return keep
def oks_iou(g: np.ndarray,
d: np.ndarray,
a_g: float,
a_d: np.ndarray,
sigmas: Optional[np.ndarray] = None,
vis_thr: Optional[float] = None) -> np.ndarray:
"""Calculate oks ious.
Note:
- number of keypoints: K
- number of instances: N
Args:
g (np.ndarray): The instance to calculate OKS IOU with other
instances. Containing the keypoints coordinates. Shape: (K*3, )
d (np.ndarray): The rest instances. Containing the keypoints
coordinates. Shape: (N, K*3)
a_g (float): Area of the ground truth object.
a_d (np.ndarray): Area of the detected object. Shape: (N, )
sigmas (np.ndarray, optional): Keypoint labelling uncertainty.
Please refer to `COCO keypoint evaluation
<https://cocodataset.org/#keypoints-eval>`__ for more details.
If not given, use the sigmas on COCO dataset.
If specified, shape: (K, ). Defaults to ``None``
vis_thr(float, optional): Threshold of the keypoint visibility.
If specified, will calculate OKS based on those keypoints whose
visibility higher than vis_thr. If not given, calculate the OKS
based on all keypoints. Defaults to ``None``
Returns:
np.ndarray: The oks ious.
"""
if sigmas is None:
sigmas = np.array([
.26, .25, .25, .35, .35, .79, .79, .72, .72, .62, .62, 1.07, 1.07,
.87, .87, .89, .89
]) / 10.0
vars = (sigmas * 2)**2
xg = g[0::3]
yg = g[1::3]
vg = g[2::3]
ious = np.zeros(len(d), dtype=np.float32)
for n_d in range(0, len(d)):
xd = d[n_d, 0::3]
yd = d[n_d, 1::3]
vd = d[n_d, 2::3]
dx = xd - xg
dy = yd - yg
e = (dx**2 + dy**2) / vars / ((a_g + a_d[n_d]) / 2 + np.spacing(1)) / 2
if vis_thr is not None:
ind = list((vg > vis_thr) & (vd > vis_thr))
e = e[ind]
ious[n_d] = np.sum(np.exp(-e)) / len(e) if len(e) != 0 else 0.0
return ious
def oks_nms(kpts_db: List[dict],
thr: float,
sigmas: Optional[np.ndarray] = None,
vis_thr: Optional[float] = None,
score_per_joint: bool = False):
"""OKS NMS implementations.
Args:
kpts_db (List[dict]): The keypoints results of the same image.
thr (float): The threshold of NMS. Will retain oks overlap < thr.
sigmas (np.ndarray, optional): Keypoint labelling uncertainty.
Please refer to `COCO keypoint evaluation
<https://cocodataset.org/#keypoints-eval>`__ for more details.
If not given, use the sigmas on COCO dataset. Defaults to ``None``
vis_thr(float, optional): Threshold of the keypoint visibility.
If specified, will calculate OKS based on those keypoints whose
visibility higher than vis_thr. If not given, calculate the OKS
based on all keypoints. Defaults to ``None``
score_per_joint(bool): Whether the input scores (in kpts_db) are
per-joint scores. Defaults to ``False``
Returns:
np.ndarray: indexes to keep.
"""
if len(kpts_db) == 0:
return []
if score_per_joint:
scores = np.array([k['score'].mean() for k in kpts_db])
else:
scores = np.array([k['score'] for k in kpts_db])
kpts = np.array([k['keypoints'].flatten() for k in kpts_db])
areas = np.array([k['area'] for k in kpts_db])
order = scores.argsort()[::-1]
keep = []
while len(order) > 0:
i = order[0]
keep.append(i)
oks_ovr = oks_iou(kpts[i], kpts[order[1:]], areas[i], areas[order[1:]],
sigmas, vis_thr)
inds = np.where(oks_ovr <= thr)[0]
order = order[inds + 1]
keep = np.array(keep)
return keep
def _rescore(overlap: np.ndarray,
scores: np.ndarray,
thr: float,
type: str = 'gaussian'):
"""Rescoring mechanism gaussian or linear.
Args:
overlap (np.ndarray): The calculated oks ious.
scores (np.ndarray): target scores.
thr (float): retain oks overlap < thr.
type (str): The rescoring type. Could be 'gaussian' or 'linear'.
Defaults to ``'gaussian'``
Returns:
np.ndarray: indexes to keep
"""
assert len(overlap) == len(scores)
assert type in ['gaussian', 'linear']
if type == 'linear':
inds = np.where(overlap >= thr)[0]
scores[inds] = scores[inds] * (1 - overlap[inds])
else:
scores = scores * np.exp(-overlap**2 / thr)
return scores
def soft_oks_nms(kpts_db: List[dict],
thr: float,
max_dets: int = 20,
sigmas: Optional[np.ndarray] = None,
vis_thr: Optional[float] = None,
score_per_joint: bool = False):
"""Soft OKS NMS implementations.
Args:
kpts_db (List[dict]): The keypoints results of the same image.
thr (float): The threshold of NMS. Will retain oks overlap < thr.
max_dets (int): Maximum number of detections to keep. Defaults to 20
sigmas (np.ndarray, optional): Keypoint labelling uncertainty.
Please refer to `COCO keypoint evaluation
<https://cocodataset.org/#keypoints-eval>`__ for more details.
If not given, use the sigmas on COCO dataset. Defaults to ``None``
vis_thr(float, optional): Threshold of the keypoint visibility.
If specified, will calculate OKS based on those keypoints whose
visibility higher than vis_thr. If not given, calculate the OKS
based on all keypoints. Defaults to ``None``
score_per_joint(bool): Whether the input scores (in kpts_db) are
per-joint scores. Defaults to ``False``
Returns:
np.ndarray: indexes to keep.
"""
if len(kpts_db) == 0:
return []
if score_per_joint:
scores = np.array([k['score'].mean() for k in kpts_db])
else:
scores = np.array([k['score'] for k in kpts_db])
kpts = np.array([k['keypoints'].flatten() for k in kpts_db])
areas = np.array([k['area'] for k in kpts_db])
order = scores.argsort()[::-1]
scores = scores[order]
keep = np.zeros(max_dets, dtype=np.intp)
keep_cnt = 0
while len(order) > 0 and keep_cnt < max_dets:
i = order[0]
oks_ovr = oks_iou(kpts[i], kpts[order[1:]], areas[i], areas[order[1:]],
sigmas, vis_thr)
order = order[1:]
scores = _rescore(oks_ovr, scores[1:], thr)
tmp = scores.argsort()[::-1]
order = order[tmp]
scores = scores[tmp]
keep[keep_cnt] = i
keep_cnt += 1
keep = keep[:keep_cnt]
return keep
def nearby_joints_nms(
kpts_db: List[dict],
dist_thr: float,
num_nearby_joints_thr: Optional[int] = None,
score_per_joint: bool = False,
max_dets: int = 30,
):
"""Nearby joints NMS implementations. Instances with non-maximum scores
will be suppressed if they have too much closed joints with other
instances. This function is modified from project
`DEKR<https://github.com/HRNet/DEKR/blob/main/lib/core/nms.py>`.
Args:
kpts_db (list[dict]): keypoints and scores.
dist_thr (float): threshold for judging whether two joints are close.
num_nearby_joints_thr (int): threshold for judging whether two
instances are close.
max_dets (int): max number of detections to keep.
score_per_joint (bool): the input scores (in kpts_db) are per joint
scores.
Returns:
np.ndarray: indexes to keep.
"""
assert dist_thr > 0, '`dist_thr` must be greater than 0.'
if len(kpts_db) == 0:
return []
if score_per_joint:
scores = np.array([k['score'].mean() for k in kpts_db])
else:
scores = np.array([k['score'] for k in kpts_db])
kpts = np.array([k['keypoints'] for k in kpts_db])
num_people, num_joints, _ = kpts.shape
if num_nearby_joints_thr is None:
num_nearby_joints_thr = num_joints // 2
assert num_nearby_joints_thr < num_joints, '`num_nearby_joints_thr` must '\
'be less than the number of joints.'
# compute distance threshold
pose_area = kpts.max(axis=1) - kpts.min(axis=1)
pose_area = np.sqrt(np.power(pose_area, 2).sum(axis=1))
pose_area = pose_area.reshape(num_people, 1, 1)
pose_area = np.tile(pose_area, (num_people, num_joints))
close_dist_thr = pose_area * dist_thr
# count nearby joints between instances
instance_dist = kpts[:, None] - kpts
instance_dist = np.sqrt(np.power(instance_dist, 2).sum(axis=3))
close_instance_num = (instance_dist < close_dist_thr).sum(2)
close_instance = close_instance_num > num_nearby_joints_thr
# apply nms
ignored_pose_inds, keep_pose_inds = set(), list()
indexes = np.argsort(scores)[::-1]
for i in indexes:
if i in ignored_pose_inds:
continue
keep_inds = close_instance[i].nonzero()[0]
keep_ind = keep_inds[np.argmax(scores[keep_inds])]
if keep_ind not in ignored_pose_inds:
keep_pose_inds.append(keep_ind)
ignored_pose_inds = ignored_pose_inds.union(set(keep_inds))
# limit the number of output instances
if max_dets > 0 and len(keep_pose_inds) > max_dets:
sub_inds = np.argsort(scores[keep_pose_inds])[-1:-max_dets - 1:-1]
keep_pose_inds = [keep_pose_inds[i] for i in sub_inds]
return keep_pose_inds
|