File size: 11,118 Bytes
cc0dd3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
# ------------------------------------------------------------------------------
# Adapted from https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
# and https://github.com/HRNet/DEKR
# Original licence: Copyright (c) Microsoft, under the MIT License.
# ------------------------------------------------------------------------------

from typing import List, Optional

import numpy as np


def nms(dets: np.ndarray, thr: float) -> List[int]:
    """Greedily select boxes with high confidence and overlap <= thr.

    Args:
        dets (np.ndarray): [[x1, y1, x2, y2, score]].
        thr (float): Retain overlap < thr.

    Returns:
        list: Indexes to keep.
    """
    if len(dets) == 0:
        return []

    x1 = dets[:, 0]
    y1 = dets[:, 1]
    x2 = dets[:, 2]
    y2 = dets[:, 3]
    scores = dets[:, 4]

    areas = (x2 - x1 + 1) * (y2 - y1 + 1)
    order = scores.argsort()[::-1]

    keep = []
    while len(order) > 0:
        i = order[0]
        keep.append(i)
        xx1 = np.maximum(x1[i], x1[order[1:]])
        yy1 = np.maximum(y1[i], y1[order[1:]])
        xx2 = np.minimum(x2[i], x2[order[1:]])
        yy2 = np.minimum(y2[i], y2[order[1:]])

        w = np.maximum(0.0, xx2 - xx1 + 1)
        h = np.maximum(0.0, yy2 - yy1 + 1)
        inter = w * h
        ovr = inter / (areas[i] + areas[order[1:]] - inter)

        inds = np.where(ovr <= thr)[0]
        order = order[inds + 1]

    return keep


def oks_iou(g: np.ndarray,
            d: np.ndarray,
            a_g: float,
            a_d: np.ndarray,
            sigmas: Optional[np.ndarray] = None,
            vis_thr: Optional[float] = None) -> np.ndarray:
    """Calculate oks ious.

    Note:

        - number of keypoints: K
        - number of instances: N

    Args:
        g (np.ndarray): The instance to calculate OKS IOU with other
            instances. Containing the keypoints coordinates. Shape: (K*3, )
        d (np.ndarray): The rest instances. Containing the keypoints
            coordinates. Shape: (N, K*3)
        a_g (float): Area of the ground truth object.
        a_d (np.ndarray): Area of the detected object. Shape: (N, )
        sigmas (np.ndarray, optional): Keypoint labelling uncertainty.
            Please refer to `COCO keypoint evaluation
            <https://cocodataset.org/#keypoints-eval>`__ for more details.
            If not given, use the sigmas on COCO dataset.
            If specified, shape: (K, ). Defaults to ``None``
        vis_thr(float, optional): Threshold of the keypoint visibility.
            If specified, will calculate OKS based on those keypoints whose
            visibility higher than vis_thr. If not given, calculate the OKS
            based on all keypoints. Defaults to ``None``

    Returns:
        np.ndarray: The oks ious.
    """
    if sigmas is None:
        sigmas = np.array([
            .26, .25, .25, .35, .35, .79, .79, .72, .72, .62, .62, 1.07, 1.07,
            .87, .87, .89, .89
        ]) / 10.0
    vars = (sigmas * 2)**2
    xg = g[0::3]
    yg = g[1::3]
    vg = g[2::3]
    ious = np.zeros(len(d), dtype=np.float32)
    for n_d in range(0, len(d)):
        xd = d[n_d, 0::3]
        yd = d[n_d, 1::3]
        vd = d[n_d, 2::3]
        dx = xd - xg
        dy = yd - yg
        e = (dx**2 + dy**2) / vars / ((a_g + a_d[n_d]) / 2 + np.spacing(1)) / 2
        if vis_thr is not None:
            ind = list((vg > vis_thr) & (vd > vis_thr))
            e = e[ind]
        ious[n_d] = np.sum(np.exp(-e)) / len(e) if len(e) != 0 else 0.0
    return ious


def oks_nms(kpts_db: List[dict],
            thr: float,
            sigmas: Optional[np.ndarray] = None,
            vis_thr: Optional[float] = None,
            score_per_joint: bool = False):
    """OKS NMS implementations.

    Args:
        kpts_db (List[dict]): The keypoints results of the same image.
        thr (float): The threshold of NMS. Will retain oks overlap < thr.
        sigmas (np.ndarray, optional): Keypoint labelling uncertainty.
            Please refer to `COCO keypoint evaluation
            <https://cocodataset.org/#keypoints-eval>`__ for more details.
            If not given, use the sigmas on COCO dataset. Defaults to ``None``
        vis_thr(float, optional): Threshold of the keypoint visibility.
            If specified, will calculate OKS based on those keypoints whose
            visibility higher than vis_thr. If not given, calculate the OKS
            based on all keypoints. Defaults to ``None``
        score_per_joint(bool): Whether the input scores (in kpts_db) are
            per-joint scores. Defaults to ``False``

    Returns:
        np.ndarray: indexes to keep.
    """
    if len(kpts_db) == 0:
        return []

    if score_per_joint:
        scores = np.array([k['score'].mean() for k in kpts_db])
    else:
        scores = np.array([k['score'] for k in kpts_db])

    kpts = np.array([k['keypoints'].flatten() for k in kpts_db])
    areas = np.array([k['area'] for k in kpts_db])

    order = scores.argsort()[::-1]

    keep = []
    while len(order) > 0:
        i = order[0]
        keep.append(i)

        oks_ovr = oks_iou(kpts[i], kpts[order[1:]], areas[i], areas[order[1:]],
                          sigmas, vis_thr)

        inds = np.where(oks_ovr <= thr)[0]
        order = order[inds + 1]

    keep = np.array(keep)

    return keep


def _rescore(overlap: np.ndarray,
             scores: np.ndarray,
             thr: float,
             type: str = 'gaussian'):
    """Rescoring mechanism gaussian or linear.

    Args:
        overlap (np.ndarray): The calculated oks ious.
        scores (np.ndarray): target scores.
        thr (float): retain oks overlap < thr.
        type (str): The rescoring type. Could be 'gaussian' or 'linear'.
            Defaults to ``'gaussian'``

    Returns:
        np.ndarray: indexes to keep
    """
    assert len(overlap) == len(scores)
    assert type in ['gaussian', 'linear']

    if type == 'linear':
        inds = np.where(overlap >= thr)[0]
        scores[inds] = scores[inds] * (1 - overlap[inds])
    else:
        scores = scores * np.exp(-overlap**2 / thr)

    return scores


def soft_oks_nms(kpts_db: List[dict],
                 thr: float,
                 max_dets: int = 20,
                 sigmas: Optional[np.ndarray] = None,
                 vis_thr: Optional[float] = None,
                 score_per_joint: bool = False):
    """Soft OKS NMS implementations.

    Args:
        kpts_db (List[dict]): The keypoints results of the same image.
        thr (float): The threshold of NMS. Will retain oks overlap < thr.
        max_dets (int): Maximum number of detections to keep. Defaults to 20
        sigmas (np.ndarray, optional): Keypoint labelling uncertainty.
            Please refer to `COCO keypoint evaluation
            <https://cocodataset.org/#keypoints-eval>`__ for more details.
            If not given, use the sigmas on COCO dataset. Defaults to ``None``
        vis_thr(float, optional): Threshold of the keypoint visibility.
            If specified, will calculate OKS based on those keypoints whose
            visibility higher than vis_thr. If not given, calculate the OKS
            based on all keypoints. Defaults to ``None``
        score_per_joint(bool): Whether the input scores (in kpts_db) are
            per-joint scores. Defaults to ``False``

    Returns:
        np.ndarray: indexes to keep.
    """
    if len(kpts_db) == 0:
        return []

    if score_per_joint:
        scores = np.array([k['score'].mean() for k in kpts_db])
    else:
        scores = np.array([k['score'] for k in kpts_db])

    kpts = np.array([k['keypoints'].flatten() for k in kpts_db])
    areas = np.array([k['area'] for k in kpts_db])

    order = scores.argsort()[::-1]
    scores = scores[order]

    keep = np.zeros(max_dets, dtype=np.intp)
    keep_cnt = 0
    while len(order) > 0 and keep_cnt < max_dets:
        i = order[0]

        oks_ovr = oks_iou(kpts[i], kpts[order[1:]], areas[i], areas[order[1:]],
                          sigmas, vis_thr)

        order = order[1:]
        scores = _rescore(oks_ovr, scores[1:], thr)

        tmp = scores.argsort()[::-1]
        order = order[tmp]
        scores = scores[tmp]

        keep[keep_cnt] = i
        keep_cnt += 1

    keep = keep[:keep_cnt]

    return keep


def nearby_joints_nms(
    kpts_db: List[dict],
    dist_thr: float,
    num_nearby_joints_thr: Optional[int] = None,
    score_per_joint: bool = False,
    max_dets: int = 30,
):
    """Nearby joints NMS implementations. Instances with non-maximum scores
    will be suppressed if they have too much closed joints with other
    instances. This function is modified from project
    `DEKR<https://github.com/HRNet/DEKR/blob/main/lib/core/nms.py>`.

    Args:
        kpts_db (list[dict]): keypoints and scores.
        dist_thr (float): threshold for judging whether two joints are close.
        num_nearby_joints_thr (int): threshold for judging whether two
            instances are close.
        max_dets (int): max number of detections to keep.
        score_per_joint (bool): the input scores (in kpts_db) are per joint
            scores.

    Returns:
        np.ndarray: indexes to keep.
    """

    assert dist_thr > 0, '`dist_thr` must be greater than 0.'
    if len(kpts_db) == 0:
        return []

    if score_per_joint:
        scores = np.array([k['score'].mean() for k in kpts_db])
    else:
        scores = np.array([k['score'] for k in kpts_db])

    kpts = np.array([k['keypoints'] for k in kpts_db])

    num_people, num_joints, _ = kpts.shape
    if num_nearby_joints_thr is None:
        num_nearby_joints_thr = num_joints // 2
    assert num_nearby_joints_thr < num_joints, '`num_nearby_joints_thr` must '\
        'be less than the number of joints.'

    # compute distance threshold
    pose_area = kpts.max(axis=1) - kpts.min(axis=1)
    pose_area = np.sqrt(np.power(pose_area, 2).sum(axis=1))
    pose_area = pose_area.reshape(num_people, 1, 1)
    pose_area = np.tile(pose_area, (num_people, num_joints))
    close_dist_thr = pose_area * dist_thr

    # count nearby joints between instances
    instance_dist = kpts[:, None] - kpts
    instance_dist = np.sqrt(np.power(instance_dist, 2).sum(axis=3))
    close_instance_num = (instance_dist < close_dist_thr).sum(2)
    close_instance = close_instance_num > num_nearby_joints_thr

    # apply nms
    ignored_pose_inds, keep_pose_inds = set(), list()
    indexes = np.argsort(scores)[::-1]
    for i in indexes:
        if i in ignored_pose_inds:
            continue
        keep_inds = close_instance[i].nonzero()[0]
        keep_ind = keep_inds[np.argmax(scores[keep_inds])]
        if keep_ind not in ignored_pose_inds:
            keep_pose_inds.append(keep_ind)
            ignored_pose_inds = ignored_pose_inds.union(set(keep_inds))

    # limit the number of output instances
    if max_dets > 0 and len(keep_pose_inds) > max_dets:
        sub_inds = np.argsort(scores[keep_pose_inds])[-1:-max_dets - 1:-1]
        keep_pose_inds = [keep_pose_inds[i] for i in sub_inds]

    return keep_pose_inds