Spaces:
Runtime error
Runtime error
File size: 39,347 Bytes
cc0dd3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 |
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
from typing import Dict, Optional, Sequence, Union
import numpy as np
from mmengine.evaluator import BaseMetric
from mmengine.logging import MMLogger
from mmpose.registry import METRICS
from ..functional import (keypoint_auc, keypoint_epe, keypoint_nme,
keypoint_pck_accuracy)
@METRICS.register_module()
class PCKAccuracy(BaseMetric):
"""PCK accuracy evaluation metric.
Calculate the pose accuracy of Percentage of Correct Keypoints (PCK) for
each individual keypoint and the averaged accuracy across all keypoints.
PCK metric measures accuracy of the localization of the body joints.
The distances between predicted positions and the ground-truth ones
are typically normalized by the person bounding box size.
The threshold (thr) of the normalized distance is commonly set
as 0.05, 0.1 or 0.2 etc.
Note:
- length of dataset: N
- num_keypoints: K
- number of keypoint dimensions: D (typically D = 2)
Args:
thr(float): Threshold of PCK calculation. Default: 0.05.
norm_item (str | Sequence[str]): The item used for normalization.
Valid items include 'bbox', 'head', 'torso', which correspond
to 'PCK', 'PCKh' and 'tPCK' respectively. Default: ``'bbox'``.
collect_device (str): Device name used for collecting results from
different ranks during distributed training. Must be ``'cpu'`` or
``'gpu'``. Default: ``'cpu'``.
prefix (str, optional): The prefix that will be added in the metric
names to disambiguate homonymous metrics of different evaluators.
If prefix is not provided in the argument, ``self.default_prefix``
will be used instead. Default: ``None``.
Examples:
>>> from mmpose.evaluation.metrics import PCKAccuracy
>>> import numpy as np
>>> from mmengine.structures import InstanceData
>>> num_keypoints = 15
>>> keypoints = np.random.random((1, num_keypoints, 2)) * 10
>>> gt_instances = InstanceData()
>>> gt_instances.keypoints = keypoints
>>> gt_instances.keypoints_visible = np.ones(
... (1, num_keypoints, 1)).astype(bool)
>>> gt_instances.bboxes = np.random.random((1, 4)) * 20
>>> pred_instances = InstanceData()
>>> pred_instances.keypoints = keypoints
>>> data_sample = {
... 'gt_instances': gt_instances.to_dict(),
... 'pred_instances': pred_instances.to_dict(),
... }
>>> data_samples = [data_sample]
>>> data_batch = [{'inputs': None}]
>>> pck_metric = PCKAccuracy(thr=0.5, norm_item='bbox')
...: UserWarning: The prefix is not set in metric class PCKAccuracy.
>>> pck_metric.process(data_batch, data_samples)
>>> pck_metric.evaluate(1)
10/26 15:37:57 - mmengine - INFO - Evaluating PCKAccuracy (normalized by ``"bbox_size"``)... # noqa
{'PCK': 1.0}
"""
def __init__(self,
thr: float = 0.05,
norm_item: Union[str, Sequence[str]] = 'bbox',
collect_device: str = 'cpu',
prefix: Optional[str] = None) -> None:
super().__init__(collect_device=collect_device, prefix=prefix)
self.thr = thr
self.norm_item = norm_item if isinstance(norm_item,
(tuple,
list)) else [norm_item]
allow_normalized_items = ['bbox', 'head', 'torso']
for item in self.norm_item:
if item not in allow_normalized_items:
raise KeyError(
f'The normalized item {item} is not supported by '
f"{self.__class__.__name__}. Should be one of 'bbox', "
f"'head', 'torso', but got {item}.")
def process(self, data_batch: Sequence[dict],
data_samples: Sequence[dict]) -> None:
"""Process one batch of data samples and predictions.
The processed
results should be stored in ``self.results``, which will be used to
compute the metrics when all batches have been processed.
Args:
data_batch (Sequence[dict]): A batch of data
from the dataloader.
data_samples (Sequence[dict]): A batch of outputs from
the model.
"""
for data_sample in data_samples:
# predicted keypoints coordinates, [1, K, D]
pred_coords = data_sample['pred_instances']['keypoints']
# ground truth data_info
gt = data_sample['gt_instances']
# ground truth keypoints coordinates, [1, K, D]
gt_coords = gt['keypoints']
# ground truth keypoints_visible, [1, K, 1]
mask = gt['keypoints_visible'].astype(bool).reshape(1, -1)
result = {
'pred_coords': pred_coords,
'gt_coords': gt_coords,
'mask': mask,
}
if 'bbox' in self.norm_item:
assert 'bboxes' in gt, 'The ground truth data info do not ' \
'have the expected normalized_item ``"bbox"``.'
# ground truth bboxes, [1, 4]
bbox_size_ = np.max(gt['bboxes'][0][2:] - gt['bboxes'][0][:2])
bbox_size = np.array([bbox_size_, bbox_size_]).reshape(-1, 2)
result['bbox_size'] = bbox_size
if 'head' in self.norm_item:
assert 'head_size' in gt, 'The ground truth data info do ' \
'not have the expected normalized_item ``"head_size"``.'
# ground truth bboxes
head_size_ = gt['head_size']
head_size = np.array([head_size_, head_size_]).reshape(-1, 2)
result['head_size'] = head_size
if 'torso' in self.norm_item:
# used in JhmdbDataset
torso_size_ = np.linalg.norm(gt_coords[0][4] - gt_coords[0][5])
if torso_size_ < 1:
torso_size_ = np.linalg.norm(pred_coords[0][4] -
pred_coords[0][5])
warnings.warn('Ground truth torso size < 1. '
'Use torso size from predicted '
'keypoint results instead.')
torso_size = np.array([torso_size_,
torso_size_]).reshape(-1, 2)
result['torso_size'] = torso_size
self.results.append(result)
def compute_metrics(self, results: list) -> Dict[str, float]:
"""Compute the metrics from processed results.
Args:
results (list): The processed results of each batch.
Returns:
Dict[str, float]: The computed metrics. The keys are the names of
the metrics, and the values are corresponding results.
The returned result dict may have the following keys:
- 'PCK': The pck accuracy normalized by `bbox_size`.
- 'PCKh': The pck accuracy normalized by `head_size`.
- 'tPCK': The pck accuracy normalized by `torso_size`.
"""
logger: MMLogger = MMLogger.get_current_instance()
# pred_coords: [N, K, D]
pred_coords = np.concatenate(
[result['pred_coords'] for result in results])
# gt_coords: [N, K, D]
gt_coords = np.concatenate([result['gt_coords'] for result in results])
# mask: [N, K]
mask = np.concatenate([result['mask'] for result in results])
metrics = dict()
if 'bbox' in self.norm_item:
norm_size_bbox = np.concatenate(
[result['bbox_size'] for result in results])
logger.info(f'Evaluating {self.__class__.__name__} '
f'(normalized by ``"bbox_size"``)...')
_, pck, _ = keypoint_pck_accuracy(pred_coords, gt_coords, mask,
self.thr, norm_size_bbox)
metrics['PCK'] = pck
if 'head' in self.norm_item:
norm_size_head = np.concatenate(
[result['head_size'] for result in results])
logger.info(f'Evaluating {self.__class__.__name__} '
f'(normalized by ``"head_size"``)...')
_, pckh, _ = keypoint_pck_accuracy(pred_coords, gt_coords, mask,
self.thr, norm_size_head)
metrics['PCKh'] = pckh
if 'torso' in self.norm_item:
norm_size_torso = np.concatenate(
[result['torso_size'] for result in results])
logger.info(f'Evaluating {self.__class__.__name__} '
f'(normalized by ``"torso_size"``)...')
_, tpck, _ = keypoint_pck_accuracy(pred_coords, gt_coords, mask,
self.thr, norm_size_torso)
metrics['tPCK'] = tpck
return metrics
@METRICS.register_module()
class MpiiPCKAccuracy(PCKAccuracy):
"""PCKh accuracy evaluation metric for MPII dataset.
Calculate the pose accuracy of Percentage of Correct Keypoints (PCK) for
each individual keypoint and the averaged accuracy across all keypoints.
PCK metric measures accuracy of the localization of the body joints.
The distances between predicted positions and the ground-truth ones
are typically normalized by the person bounding box size.
The threshold (thr) of the normalized distance is commonly set
as 0.05, 0.1 or 0.2 etc.
Note:
- length of dataset: N
- num_keypoints: K
- number of keypoint dimensions: D (typically D = 2)
Args:
thr(float): Threshold of PCK calculation. Default: 0.05.
norm_item (str | Sequence[str]): The item used for normalization.
Valid items include 'bbox', 'head', 'torso', which correspond
to 'PCK', 'PCKh' and 'tPCK' respectively. Default: ``'head'``.
collect_device (str): Device name used for collecting results from
different ranks during distributed training. Must be ``'cpu'`` or
``'gpu'``. Default: ``'cpu'``.
prefix (str, optional): The prefix that will be added in the metric
names to disambiguate homonymous metrics of different evaluators.
If prefix is not provided in the argument, ``self.default_prefix``
will be used instead. Default: ``None``.
Examples:
>>> from mmpose.evaluation.metrics import MpiiPCKAccuracy
>>> import numpy as np
>>> from mmengine.structures import InstanceData
>>> num_keypoints = 16
>>> keypoints = np.random.random((1, num_keypoints, 2)) * 10
>>> gt_instances = InstanceData()
>>> gt_instances.keypoints = keypoints + 1.0
>>> gt_instances.keypoints_visible = np.ones(
... (1, num_keypoints, 1)).astype(bool)
>>> gt_instances.head_size = np.random.random((1, 1)) * 10
>>> pred_instances = InstanceData()
>>> pred_instances.keypoints = keypoints
>>> data_sample = {
... 'gt_instances': gt_instances.to_dict(),
... 'pred_instances': pred_instances.to_dict(),
... }
>>> data_samples = [data_sample]
>>> data_batch = [{'inputs': None}]
>>> mpii_pck_metric = MpiiPCKAccuracy(thr=0.3, norm_item='head')
... UserWarning: The prefix is not set in metric class MpiiPCKAccuracy.
>>> mpii_pck_metric.process(data_batch, data_samples)
>>> mpii_pck_metric.evaluate(1)
10/26 17:43:39 - mmengine - INFO - Evaluating MpiiPCKAccuracy (normalized by ``"head_size"``)... # noqa
{'Head PCK': 100.0, 'Shoulder PCK': 100.0, 'Elbow PCK': 100.0,
Wrist PCK': 100.0, 'Hip PCK': 100.0, 'Knee PCK': 100.0,
'Ankle PCK': 100.0, 'PCK': 100.0, '[email protected]': 100.0}
"""
def __init__(self,
thr: float = 0.5,
norm_item: Union[str, Sequence[str]] = 'head',
collect_device: str = 'cpu',
prefix: Optional[str] = None) -> None:
super().__init__(
thr=thr,
norm_item=norm_item,
collect_device=collect_device,
prefix=prefix)
def compute_metrics(self, results: list) -> Dict[str, float]:
"""Compute the metrics from processed results.
Args:
results (list): The processed results of each batch.
Returns:
Dict[str, float]: The computed metrics. The keys are the names of
the metrics, and the values are corresponding results.
If `'head'` in `self.norm_item`, the returned results are the pck
accuracy normalized by `head_size`, which have the following keys:
- 'Head PCK': The PCK of head
- 'Shoulder PCK': The PCK of shoulder
- 'Elbow PCK': The PCK of elbow
- 'Wrist PCK': The PCK of wrist
- 'Hip PCK': The PCK of hip
- 'Knee PCK': The PCK of knee
- 'Ankle PCK': The PCK of ankle
- 'PCK': The mean PCK over all keypoints
- '[email protected]': The mean PCK at threshold 0.1
"""
logger: MMLogger = MMLogger.get_current_instance()
# pred_coords: [N, K, D]
pred_coords = np.concatenate(
[result['pred_coords'] for result in results])
# gt_coords: [N, K, D]
gt_coords = np.concatenate([result['gt_coords'] for result in results])
# mask: [N, K]
mask = np.concatenate([result['mask'] for result in results])
# MPII uses matlab format, gt index is 1-based,
# convert 0-based index to 1-based index
pred_coords = pred_coords + 1.0
metrics = {}
if 'head' in self.norm_item:
norm_size_head = np.concatenate(
[result['head_size'] for result in results])
logger.info(f'Evaluating {self.__class__.__name__} '
f'(normalized by ``"head_size"``)...')
pck_p, _, _ = keypoint_pck_accuracy(pred_coords, gt_coords, mask,
self.thr, norm_size_head)
jnt_count = np.sum(mask, axis=0)
PCKh = 100. * pck_p
rng = np.arange(0, 0.5 + 0.01, 0.01)
pckAll = np.zeros((len(rng), 16), dtype=np.float32)
for r, threshold in enumerate(rng):
_pck, _, _ = keypoint_pck_accuracy(pred_coords, gt_coords,
mask, threshold,
norm_size_head)
pckAll[r, :] = 100. * _pck
PCKh = np.ma.array(PCKh, mask=False)
PCKh.mask[6:8] = True
jnt_count = np.ma.array(jnt_count, mask=False)
jnt_count.mask[6:8] = True
jnt_ratio = jnt_count / np.sum(jnt_count).astype(np.float64)
# dataset_joints_idx:
# head 9
# lsho 13 rsho 12
# lelb 14 relb 11
# lwri 15 rwri 10
# lhip 3 rhip 2
# lkne 4 rkne 1
# lank 5 rank 0
stats = {
'Head PCK': PCKh[9],
'Shoulder PCK': 0.5 * (PCKh[13] + PCKh[12]),
'Elbow PCK': 0.5 * (PCKh[14] + PCKh[11]),
'Wrist PCK': 0.5 * (PCKh[15] + PCKh[10]),
'Hip PCK': 0.5 * (PCKh[3] + PCKh[2]),
'Knee PCK': 0.5 * (PCKh[4] + PCKh[1]),
'Ankle PCK': 0.5 * (PCKh[5] + PCKh[0]),
'PCK': np.sum(PCKh * jnt_ratio),
'[email protected]': np.sum(pckAll[10, :] * jnt_ratio)
}
for stats_name, stat in stats.items():
metrics[stats_name] = stat
return metrics
@METRICS.register_module()
class JhmdbPCKAccuracy(PCKAccuracy):
"""PCK accuracy evaluation metric for Jhmdb dataset.
Calculate the pose accuracy of Percentage of Correct Keypoints (PCK) for
each individual keypoint and the averaged accuracy across all keypoints.
PCK metric measures accuracy of the localization of the body joints.
The distances between predicted positions and the ground-truth ones
are typically normalized by the person bounding box size.
The threshold (thr) of the normalized distance is commonly set
as 0.05, 0.1 or 0.2 etc.
Note:
- length of dataset: N
- num_keypoints: K
- number of keypoint dimensions: D (typically D = 2)
Args:
thr(float): Threshold of PCK calculation. Default: 0.05.
norm_item (str | Sequence[str]): The item used for normalization.
Valid items include 'bbox', 'head', 'torso', which correspond
to 'PCK', 'PCKh' and 'tPCK' respectively. Default: ``'bbox'``.
collect_device (str): Device name used for collecting results from
different ranks during distributed training. Must be ``'cpu'`` or
``'gpu'``. Default: ``'cpu'``.
prefix (str, optional): The prefix that will be added in the metric
names to disambiguate homonymous metrics of different evaluators.
If prefix is not provided in the argument, ``self.default_prefix``
will be used instead. Default: ``None``.
Examples:
>>> from mmpose.evaluation.metrics import JhmdbPCKAccuracy
>>> import numpy as np
>>> from mmengine.structures import InstanceData
>>> num_keypoints = 15
>>> keypoints = np.random.random((1, num_keypoints, 2)) * 10
>>> gt_instances = InstanceData()
>>> gt_instances.keypoints = keypoints
>>> gt_instances.keypoints_visible = np.ones(
... (1, num_keypoints, 1)).astype(bool)
>>> gt_instances.bboxes = np.random.random((1, 4)) * 20
>>> gt_instances.head_size = np.random.random((1, 1)) * 10
>>> pred_instances = InstanceData()
>>> pred_instances.keypoints = keypoints
>>> data_sample = {
... 'gt_instances': gt_instances.to_dict(),
... 'pred_instances': pred_instances.to_dict(),
... }
>>> data_samples = [data_sample]
>>> data_batch = [{'inputs': None}]
>>> jhmdb_pck_metric = JhmdbPCKAccuracy(thr=0.2, norm_item=['bbox', 'torso'])
... UserWarning: The prefix is not set in metric class JhmdbPCKAccuracy.
>>> jhmdb_pck_metric.process(data_batch, data_samples)
>>> jhmdb_pck_metric.evaluate(1)
10/26 17:48:09 - mmengine - INFO - Evaluating JhmdbPCKAccuracy (normalized by ``"bbox_size"``)... # noqa
10/26 17:48:09 - mmengine - INFO - Evaluating JhmdbPCKAccuracy (normalized by ``"torso_size"``)... # noqa
{'Head PCK': 1.0, 'Sho PCK': 1.0, 'Elb PCK': 1.0, 'Wri PCK': 1.0,
'Hip PCK': 1.0, 'Knee PCK': 1.0, 'Ank PCK': 1.0, 'PCK': 1.0,
'Head tPCK': 1.0, 'Sho tPCK': 1.0, 'Elb tPCK': 1.0, 'Wri tPCK': 1.0,
'Hip tPCK': 1.0, 'Knee tPCK': 1.0, 'Ank tPCK': 1.0, 'tPCK': 1.0}
"""
def __init__(self,
thr: float = 0.05,
norm_item: Union[str, Sequence[str]] = 'bbox',
collect_device: str = 'cpu',
prefix: Optional[str] = None) -> None:
super().__init__(
thr=thr,
norm_item=norm_item,
collect_device=collect_device,
prefix=prefix)
def compute_metrics(self, results: list) -> Dict[str, float]:
"""Compute the metrics from processed results.
Args:
results (list): The processed results of each batch.
Returns:
Dict[str, float]: The computed metrics. The keys are the names of
the metrics, and the values are corresponding results.
If `'bbox'` in `self.norm_item`, the returned results are the pck
accuracy normalized by `bbox_size`, which have the following keys:
- 'Head PCK': The PCK of head
- 'Sho PCK': The PCK of shoulder
- 'Elb PCK': The PCK of elbow
- 'Wri PCK': The PCK of wrist
- 'Hip PCK': The PCK of hip
- 'Knee PCK': The PCK of knee
- 'Ank PCK': The PCK of ankle
- 'PCK': The mean PCK over all keypoints
If `'torso'` in `self.norm_item`, the returned results are the pck
accuracy normalized by `torso_size`, which have the following keys:
- 'Head tPCK': The PCK of head
- 'Sho tPCK': The PCK of shoulder
- 'Elb tPCK': The PCK of elbow
- 'Wri tPCK': The PCK of wrist
- 'Hip tPCK': The PCK of hip
- 'Knee tPCK': The PCK of knee
- 'Ank tPCK': The PCK of ankle
- 'tPCK': The mean PCK over all keypoints
"""
logger: MMLogger = MMLogger.get_current_instance()
# pred_coords: [N, K, D]
pred_coords = np.concatenate(
[result['pred_coords'] for result in results])
# gt_coords: [N, K, D]
gt_coords = np.concatenate([result['gt_coords'] for result in results])
# mask: [N, K]
mask = np.concatenate([result['mask'] for result in results])
metrics = dict()
if 'bbox' in self.norm_item:
norm_size_bbox = np.concatenate(
[result['bbox_size'] for result in results])
logger.info(f'Evaluating {self.__class__.__name__} '
f'(normalized by ``"bbox_size"``)...')
pck_p, pck, _ = keypoint_pck_accuracy(pred_coords, gt_coords, mask,
self.thr, norm_size_bbox)
stats = {
'Head PCK': pck_p[2],
'Sho PCK': 0.5 * pck_p[3] + 0.5 * pck_p[4],
'Elb PCK': 0.5 * pck_p[7] + 0.5 * pck_p[8],
'Wri PCK': 0.5 * pck_p[11] + 0.5 * pck_p[12],
'Hip PCK': 0.5 * pck_p[5] + 0.5 * pck_p[6],
'Knee PCK': 0.5 * pck_p[9] + 0.5 * pck_p[10],
'Ank PCK': 0.5 * pck_p[13] + 0.5 * pck_p[14],
'PCK': pck
}
for stats_name, stat in stats.items():
metrics[stats_name] = stat
if 'torso' in self.norm_item:
norm_size_torso = np.concatenate(
[result['torso_size'] for result in results])
logger.info(f'Evaluating {self.__class__.__name__} '
f'(normalized by ``"torso_size"``)...')
pck_p, pck, _ = keypoint_pck_accuracy(pred_coords, gt_coords, mask,
self.thr, norm_size_torso)
stats = {
'Head tPCK': pck_p[2],
'Sho tPCK': 0.5 * pck_p[3] + 0.5 * pck_p[4],
'Elb tPCK': 0.5 * pck_p[7] + 0.5 * pck_p[8],
'Wri tPCK': 0.5 * pck_p[11] + 0.5 * pck_p[12],
'Hip tPCK': 0.5 * pck_p[5] + 0.5 * pck_p[6],
'Knee tPCK': 0.5 * pck_p[9] + 0.5 * pck_p[10],
'Ank tPCK': 0.5 * pck_p[13] + 0.5 * pck_p[14],
'tPCK': pck
}
for stats_name, stat in stats.items():
metrics[stats_name] = stat
return metrics
@METRICS.register_module()
class AUC(BaseMetric):
"""AUC evaluation metric.
Calculate the Area Under Curve (AUC) of keypoint PCK accuracy.
By altering the threshold percentage in the calculation of PCK accuracy,
AUC can be generated to further evaluate the pose estimation algorithms.
Note:
- length of dataset: N
- num_keypoints: K
- number of keypoint dimensions: D (typically D = 2)
Args:
norm_factor (float): AUC normalization factor, Default: 30 (pixels).
num_thrs (int): number of thresholds to calculate auc. Default: 20.
collect_device (str): Device name used for collecting results from
different ranks during distributed training. Must be ``'cpu'`` or
``'gpu'``. Default: ``'cpu'``.
prefix (str, optional): The prefix that will be added in the metric
names to disambiguate homonymous metrics of different evaluators.
If prefix is not provided in the argument, ``self.default_prefix``
will be used instead. Default: ``None``.
"""
def __init__(self,
norm_factor: float = 30,
num_thrs: int = 20,
collect_device: str = 'cpu',
prefix: Optional[str] = None) -> None:
super().__init__(collect_device=collect_device, prefix=prefix)
self.norm_factor = norm_factor
self.num_thrs = num_thrs
def process(self, data_batch: Sequence[dict],
data_samples: Sequence[dict]) -> None:
"""Process one batch of data samples and predictions. The processed
results should be stored in ``self.results``, which will be used to
compute the metrics when all batches have been processed.
Args:
data_batch (Sequence[dict]): A batch of data
from the dataloader.
data_sample (Sequence[dict]): A batch of outputs from
the model.
"""
for data_sample in data_samples:
# predicted keypoints coordinates, [1, K, D]
pred_coords = data_sample['pred_instances']['keypoints']
# ground truth data_info
gt = data_sample['gt_instances']
# ground truth keypoints coordinates, [1, K, D]
gt_coords = gt['keypoints']
# ground truth keypoints_visible, [1, K, 1]
mask = gt['keypoints_visible'].astype(bool).reshape(1, -1)
result = {
'pred_coords': pred_coords,
'gt_coords': gt_coords,
'mask': mask,
}
self.results.append(result)
def compute_metrics(self, results: list) -> Dict[str, float]:
"""Compute the metrics from processed results.
Args:
results (list): The processed results of each batch.
Returns:
Dict[str, float]: The computed metrics. The keys are the names of
the metrics, and the values are corresponding results.
"""
logger: MMLogger = MMLogger.get_current_instance()
# pred_coords: [N, K, D]
pred_coords = np.concatenate(
[result['pred_coords'] for result in results])
# gt_coords: [N, K, D]
gt_coords = np.concatenate([result['gt_coords'] for result in results])
# mask: [N, K]
mask = np.concatenate([result['mask'] for result in results])
logger.info(f'Evaluating {self.__class__.__name__}...')
auc = keypoint_auc(pred_coords, gt_coords, mask, self.norm_factor,
self.num_thrs)
metrics = dict()
metrics['AUC'] = auc
return metrics
@METRICS.register_module()
class EPE(BaseMetric):
"""EPE evaluation metric.
Calculate the end-point error (EPE) of keypoints.
Note:
- length of dataset: N
- num_keypoints: K
- number of keypoint dimensions: D (typically D = 2)
Args:
collect_device (str): Device name used for collecting results from
different ranks during distributed training. Must be ``'cpu'`` or
``'gpu'``. Default: ``'cpu'``.
prefix (str, optional): The prefix that will be added in the metric
names to disambiguate homonymous metrics of different evaluators.
If prefix is not provided in the argument, ``self.default_prefix``
will be used instead. Default: ``None``.
"""
def process(self, data_batch: Sequence[dict],
data_samples: Sequence[dict]) -> None:
"""Process one batch of data samples and predictions. The processed
results should be stored in ``self.results``, which will be used to
compute the metrics when all batches have been processed.
Args:
data_batch (Sequence[dict]): A batch of data
from the dataloader.
data_samples (Sequence[dict]): A batch of outputs from
the model.
"""
for data_sample in data_samples:
# predicted keypoints coordinates, [1, K, D]
pred_coords = data_sample['pred_instances']['keypoints']
# ground truth data_info
gt = data_sample['gt_instances']
# ground truth keypoints coordinates, [1, K, D]
gt_coords = gt['keypoints']
# ground truth keypoints_visible, [1, K, 1]
mask = gt['keypoints_visible'].astype(bool).reshape(1, -1)
result = {
'pred_coords': pred_coords,
'gt_coords': gt_coords,
'mask': mask,
}
self.results.append(result)
def compute_metrics(self, results: list) -> Dict[str, float]:
"""Compute the metrics from processed results.
Args:
results (list): The processed results of each batch.
Returns:
Dict[str, float]: The computed metrics. The keys are the names of
the metrics, and the values are corresponding results.
"""
logger: MMLogger = MMLogger.get_current_instance()
# pred_coords: [N, K, D]
pred_coords = np.concatenate(
[result['pred_coords'] for result in results])
# gt_coords: [N, K, D]
gt_coords = np.concatenate([result['gt_coords'] for result in results])
# mask: [N, K]
mask = np.concatenate([result['mask'] for result in results])
logger.info(f'Evaluating {self.__class__.__name__}...')
epe = keypoint_epe(pred_coords, gt_coords, mask)
metrics = dict()
metrics['EPE'] = epe
return metrics
@METRICS.register_module()
class NME(BaseMetric):
"""NME evaluation metric.
Calculate the normalized mean error (NME) of keypoints.
Note:
- length of dataset: N
- num_keypoints: K
- number of keypoint dimensions: D (typically D = 2)
Args:
norm_mode (str): The normalization mode. There are two valid modes:
`'use_norm_item'` and `'keypoint_distance'`.
When set as `'use_norm_item'`, should specify the argument
`norm_item`, which represents the item in the datainfo that
will be used as the normalization factor.
When set as `'keypoint_distance'`, should specify the argument
`keypoint_indices` that are used to calculate the keypoint
distance as the normalization factor.
norm_item (str, optional): The item used as the normalization factor.
For example, `'bbox_size'` in `'AFLWDataset'`. Only valid when
``norm_mode`` is ``use_norm_item``.
Default: ``None``.
keypoint_indices (Sequence[int], optional): The keypoint indices used
to calculate the keypoint distance as the normalization factor.
Only valid when ``norm_mode`` is ``keypoint_distance``.
If set as None, will use the default ``keypoint_indices`` in
`DEFAULT_KEYPOINT_INDICES` for specific datasets, else use the
given ``keypoint_indices`` of the dataset. Default: ``None``.
collect_device (str): Device name used for collecting results from
different ranks during distributed training. Must be ``'cpu'`` or
``'gpu'``. Default: ``'cpu'``.
prefix (str, optional): The prefix that will be added in the metric
names to disambiguate homonymous metrics of different evaluators.
If prefix is not provided in the argument, ``self.default_prefix``
will be used instead. Default: ``None``.
"""
DEFAULT_KEYPOINT_INDICES = {
# horse10: corresponding to `nose` and `eye` keypoints
'horse10': [0, 1],
# 300w: corresponding to `right-most` and `left-most` eye keypoints
'300w': [36, 45],
# coco_wholebody_face corresponding to `right-most` and `left-most`
# eye keypoints
'coco_wholebody_face': [36, 45],
# cofw: corresponding to `right-most` and `left-most` eye keypoints
'cofw': [8, 9],
# wflw: corresponding to `right-most` and `left-most` eye keypoints
'wflw': [60, 72],
}
def __init__(self,
norm_mode: str,
norm_item: Optional[str] = None,
keypoint_indices: Optional[Sequence[int]] = None,
collect_device: str = 'cpu',
prefix: Optional[str] = None) -> None:
super().__init__(collect_device=collect_device, prefix=prefix)
allowed_norm_modes = ['use_norm_item', 'keypoint_distance']
if norm_mode not in allowed_norm_modes:
raise KeyError("`norm_mode` should be 'use_norm_item' or "
f"'keypoint_distance', but got {norm_mode}.")
self.norm_mode = norm_mode
if self.norm_mode == 'use_norm_item':
if not norm_item:
raise KeyError('`norm_mode` is set to `"use_norm_item"`, '
'please specify the `norm_item` in the '
'datainfo used as the normalization factor.')
self.norm_item = norm_item
self.keypoint_indices = keypoint_indices
def process(self, data_batch: Sequence[dict],
data_samples: Sequence[dict]) -> None:
"""Process one batch of data samples and predictions. The processed
results should be stored in ``self.results``, which will be used to
compute the metrics when all batches have been processed.
Args:
data_batch (Sequence[dict]): A batch of data
from the dataloader.
data_samples (Sequence[dict]): A batch of outputs from
the model.
"""
for data_sample in data_samples:
# predicted keypoints coordinates, [1, K, D]
pred_coords = data_sample['pred_instances']['keypoints']
# ground truth data_info
gt = data_sample['gt_instances']
# ground truth keypoints coordinates, [1, K, D]
gt_coords = gt['keypoints']
# ground truth keypoints_visible, [1, K, 1]
mask = gt['keypoints_visible'].astype(bool).reshape(1, -1)
result = {
'pred_coords': pred_coords,
'gt_coords': gt_coords,
'mask': mask,
}
if self.norm_item:
if self.norm_item == 'bbox_size':
assert 'bboxes' in gt, 'The ground truth data info do ' \
'not have the item ``bboxes`` for expected ' \
'normalized_item ``"bbox_size"``.'
# ground truth bboxes, [1, 4]
bbox_size = np.max(gt['bboxes'][0][2:] -
gt['bboxes'][0][:2])
result['bbox_size'] = np.array([bbox_size]).reshape(-1, 1)
else:
assert self.norm_item in gt, f'The ground truth data ' \
f'info do not have the expected normalized factor ' \
f'"{self.norm_item}"'
# ground truth norm_item
result[self.norm_item] = np.array(
gt[self.norm_item]).reshape([-1, 1])
self.results.append(result)
def compute_metrics(self, results: list) -> Dict[str, float]:
"""Compute the metrics from processed results.
Args:
results (list): The processed results of each batch.
Returns:
Dict[str, float]: The computed metrics. The keys are the names of
the metrics, and the values are corresponding results.
"""
logger: MMLogger = MMLogger.get_current_instance()
# pred_coords: [N, K, D]
pred_coords = np.concatenate(
[result['pred_coords'] for result in results])
# gt_coords: [N, K, D]
gt_coords = np.concatenate([result['gt_coords'] for result in results])
# mask: [N, K]
mask = np.concatenate([result['mask'] for result in results])
logger.info(f'Evaluating {self.__class__.__name__}...')
metrics = dict()
if self.norm_mode == 'use_norm_item':
normalize_factor_ = np.concatenate(
[result[self.norm_item] for result in results])
# normalize_factor: [N, 2]
normalize_factor = np.tile(normalize_factor_, [1, 2])
nme = keypoint_nme(pred_coords, gt_coords, mask, normalize_factor)
metrics['NME'] = nme
else:
if self.keypoint_indices is None:
# use default keypoint_indices in some datasets
dataset_name = self.dataset_meta['dataset_name']
if dataset_name not in self.DEFAULT_KEYPOINT_INDICES:
raise KeyError(
'`norm_mode` is set to `keypoint_distance`, and the '
'keypoint_indices is set to None, can not find the '
'keypoint_indices in `DEFAULT_KEYPOINT_INDICES`, '
'please specify `keypoint_indices` appropriately.')
self.keypoint_indices = self.DEFAULT_KEYPOINT_INDICES[
dataset_name]
else:
assert len(self.keypoint_indices) == 2, 'The keypoint '\
'indices used for normalization should be a pair.'
keypoint_id2name = self.dataset_meta['keypoint_id2name']
dataset_name = self.dataset_meta['dataset_name']
for idx in self.keypoint_indices:
assert idx in keypoint_id2name, f'The {dataset_name} '\
f'dataset does not contain the required '\
f'{idx}-th keypoint.'
# normalize_factor: [N, 2]
normalize_factor = self._get_normalize_factor(gt_coords=gt_coords)
nme = keypoint_nme(pred_coords, gt_coords, mask, normalize_factor)
metrics['NME'] = nme
return metrics
def _get_normalize_factor(self, gt_coords: np.ndarray) -> np.ndarray:
"""Get the normalize factor. generally inter-ocular distance measured
as the Euclidean distance between the outer corners of the eyes is
used.
Args:
gt_coords (np.ndarray[N, K, 2]): Groundtruth keypoint coordinates.
Returns:
np.ndarray[N, 2]: normalized factor
"""
idx1, idx2 = self.keypoint_indices
interocular = np.linalg.norm(
gt_coords[:, idx1, :] - gt_coords[:, idx2, :],
axis=1,
keepdims=True)
return np.tile(interocular, [1, 2])
|