File size: 6,848 Bytes
cc0dd3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# Copyright (c) OpenMMLab. All rights reserved.
import copy

import torch.nn as nn
from mmcv.cnn import ConvModule, MaxPool2d
from mmengine.model import BaseModule

from mmpose.registry import MODELS
from .base_backbone import BaseBackbone


class HourglassAEModule(BaseModule):
    """Modified Hourglass Module for HourglassNet_AE backbone.

    Generate module recursively and use BasicBlock as the base unit.

    Args:
        depth (int): Depth of current HourglassModule.
        stage_channels (list[int]): Feature channels of sub-modules in current
            and follow-up HourglassModule.
        norm_cfg (dict): Dictionary to construct and config norm layer.
        init_cfg (dict or list[dict], optional): Initialization config dict.
            Default: None
    """

    def __init__(self,
                 depth,
                 stage_channels,
                 norm_cfg=dict(type='BN', requires_grad=True),
                 init_cfg=None):
        # Protect mutable default arguments
        norm_cfg = copy.deepcopy(norm_cfg)
        super().__init__(init_cfg=init_cfg)

        self.depth = depth

        cur_channel = stage_channels[0]
        next_channel = stage_channels[1]

        self.up1 = ConvModule(
            cur_channel, cur_channel, 3, padding=1, norm_cfg=norm_cfg)

        self.pool1 = MaxPool2d(2, 2)

        self.low1 = ConvModule(
            cur_channel, next_channel, 3, padding=1, norm_cfg=norm_cfg)

        if self.depth > 1:
            self.low2 = HourglassAEModule(depth - 1, stage_channels[1:])
        else:
            self.low2 = ConvModule(
                next_channel, next_channel, 3, padding=1, norm_cfg=norm_cfg)

        self.low3 = ConvModule(
            next_channel, cur_channel, 3, padding=1, norm_cfg=norm_cfg)

        self.up2 = nn.UpsamplingNearest2d(scale_factor=2)

    def forward(self, x):
        """Model forward function."""
        up1 = self.up1(x)
        pool1 = self.pool1(x)
        low1 = self.low1(pool1)
        low2 = self.low2(low1)
        low3 = self.low3(low2)
        up2 = self.up2(low3)
        return up1 + up2


@MODELS.register_module()
class HourglassAENet(BaseBackbone):
    """Hourglass-AE Network proposed by Newell et al.

    Associative Embedding: End-to-End Learning for Joint
    Detection and Grouping.

    More details can be found in the `paper
    <https://arxiv.org/abs/1611.05424>`__ .

    Args:
        downsample_times (int): Downsample times in a HourglassModule.
        num_stacks (int): Number of HourglassModule modules stacked,
            1 for Hourglass-52, 2 for Hourglass-104.
        stage_channels (list[int]): Feature channel of each sub-module in a
            HourglassModule.
        stage_blocks (list[int]): Number of sub-modules stacked in a
            HourglassModule.
        feat_channels (int): Feature channel of conv after a HourglassModule.
        norm_cfg (dict): Dictionary to construct and config norm layer.
        init_cfg (dict or list[dict], optional): Initialization config dict.
            Default:
            ``[
                dict(type='Normal', std=0.001, layer=['Conv2d']),
                dict(
                    type='Constant',
                    val=1,
                    layer=['_BatchNorm', 'GroupNorm'])
            ]``

    Example:
        >>> from mmpose.models import HourglassAENet
        >>> import torch
        >>> self = HourglassAENet()
        >>> self.eval()
        >>> inputs = torch.rand(1, 3, 512, 512)
        >>> level_outputs = self.forward(inputs)
        >>> for level_output in level_outputs:
        ...     print(tuple(level_output.shape))
        (1, 34, 128, 128)
    """

    def __init__(
        self,
        downsample_times=4,
        num_stacks=1,
        out_channels=34,
        stage_channels=(256, 384, 512, 640, 768),
        feat_channels=256,
        norm_cfg=dict(type='BN', requires_grad=True),
        init_cfg=[
            dict(type='Normal', std=0.001, layer=['Conv2d']),
            dict(type='Constant', val=1, layer=['_BatchNorm', 'GroupNorm'])
        ],
    ):
        # Protect mutable default arguments
        norm_cfg = copy.deepcopy(norm_cfg)
        super().__init__(init_cfg=init_cfg)

        self.num_stacks = num_stacks
        assert self.num_stacks >= 1
        assert len(stage_channels) > downsample_times

        cur_channels = stage_channels[0]

        self.stem = nn.Sequential(
            ConvModule(3, 64, 7, padding=3, stride=2, norm_cfg=norm_cfg),
            ConvModule(64, 128, 3, padding=1, norm_cfg=norm_cfg),
            MaxPool2d(2, 2),
            ConvModule(128, 128, 3, padding=1, norm_cfg=norm_cfg),
            ConvModule(128, feat_channels, 3, padding=1, norm_cfg=norm_cfg),
        )

        self.hourglass_modules = nn.ModuleList([
            nn.Sequential(
                HourglassAEModule(
                    downsample_times, stage_channels, norm_cfg=norm_cfg),
                ConvModule(
                    feat_channels,
                    feat_channels,
                    3,
                    padding=1,
                    norm_cfg=norm_cfg),
                ConvModule(
                    feat_channels,
                    feat_channels,
                    3,
                    padding=1,
                    norm_cfg=norm_cfg)) for _ in range(num_stacks)
        ])

        self.out_convs = nn.ModuleList([
            ConvModule(
                cur_channels,
                out_channels,
                1,
                padding=0,
                norm_cfg=None,
                act_cfg=None) for _ in range(num_stacks)
        ])

        self.remap_out_convs = nn.ModuleList([
            ConvModule(
                out_channels,
                feat_channels,
                1,
                norm_cfg=norm_cfg,
                act_cfg=None) for _ in range(num_stacks - 1)
        ])

        self.remap_feature_convs = nn.ModuleList([
            ConvModule(
                feat_channels,
                feat_channels,
                1,
                norm_cfg=norm_cfg,
                act_cfg=None) for _ in range(num_stacks - 1)
        ])

        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        """Model forward function."""
        inter_feat = self.stem(x)
        out_feats = []

        for ind in range(self.num_stacks):
            single_hourglass = self.hourglass_modules[ind]
            out_conv = self.out_convs[ind]

            hourglass_feat = single_hourglass(inter_feat)
            out_feat = out_conv(hourglass_feat)
            out_feats.append(out_feat)

            if ind < self.num_stacks - 1:
                inter_feat = inter_feat + self.remap_out_convs[ind](
                    out_feat) + self.remap_feature_convs[ind](
                        hourglass_feat)

        return out_feats