File size: 4,929 Bytes
cc0dd3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# Copyright (c) OpenMMLab. All rights reserved.
import torch.utils.checkpoint as cp

from mmpose.registry import MODELS
from .resnet import Bottleneck, ResLayer, ResNet
from .utils.se_layer import SELayer


class SEBottleneck(Bottleneck):
    """SEBottleneck block for SEResNet.

    Args:
        in_channels (int): The input channels of the SEBottleneck block.
        out_channels (int): The output channel of the SEBottleneck block.
        se_ratio (int): Squeeze ratio in SELayer. Default: 16
    """

    def __init__(self, in_channels, out_channels, se_ratio=16, **kwargs):
        super().__init__(in_channels, out_channels, **kwargs)
        self.se_layer = SELayer(out_channels, ratio=se_ratio)

    def forward(self, x):

        def _inner_forward(x):
            identity = x

            out = self.conv1(x)
            out = self.norm1(out)
            out = self.relu(out)

            out = self.conv2(out)
            out = self.norm2(out)
            out = self.relu(out)

            out = self.conv3(out)
            out = self.norm3(out)

            out = self.se_layer(out)

            if self.downsample is not None:
                identity = self.downsample(x)

            out += identity

            return out

        if self.with_cp and x.requires_grad:
            out = cp.checkpoint(_inner_forward, x)
        else:
            out = _inner_forward(x)

        out = self.relu(out)

        return out


@MODELS.register_module()
class SEResNet(ResNet):
    """SEResNet backbone.

    Please refer to the `paper <https://arxiv.org/abs/1709.01507>`__ for
    details.

    Args:
        depth (int): Network depth, from {50, 101, 152}.
        se_ratio (int): Squeeze ratio in SELayer. Default: 16.
        in_channels (int): Number of input image channels. Default: 3.
        stem_channels (int): Output channels of the stem layer. Default: 64.
        num_stages (int): Stages of the network. Default: 4.
        strides (Sequence[int]): Strides of the first block of each stage.
            Default: ``(1, 2, 2, 2)``.
        dilations (Sequence[int]): Dilation of each stage.
            Default: ``(1, 1, 1, 1)``.
        out_indices (Sequence[int]): Output from which stages. If only one
            stage is specified, a single tensor (feature map) is returned,
            otherwise multiple stages are specified, a tuple of tensors will
            be returned. Default: ``(3, )``.
        style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two
            layer is the 3x3 conv layer, otherwise the stride-two layer is
            the first 1x1 conv layer.
        deep_stem (bool): Replace 7x7 conv in input stem with 3 3x3 conv.
            Default: False.
        avg_down (bool): Use AvgPool instead of stride conv when
            downsampling in the bottleneck. Default: False.
        frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
            -1 means not freezing any parameters. Default: -1.
        conv_cfg (dict | None): The config dict for conv layers. Default: None.
        norm_cfg (dict): The config dict for norm layers.
        norm_eval (bool): Whether to set norm layers to eval mode, namely,
            freeze running stats (mean and var). Note: Effect on Batch Norm
            and its variants only. Default: False.
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed. Default: False.
        zero_init_residual (bool): Whether to use zero init for last norm layer
            in resblocks to let them behave as identity. Default: True.
        init_cfg (dict or list[dict], optional): Initialization config dict.
            Default:
            ``[
                dict(type='Kaiming', layer=['Conv2d']),
                dict(
                    type='Constant',
                    val=1,
                    layer=['_BatchNorm', 'GroupNorm'])
            ]``

    Example:
        >>> from mmpose.models import SEResNet
        >>> import torch
        >>> self = SEResNet(depth=50, out_indices=(0, 1, 2, 3))
        >>> self.eval()
        >>> inputs = torch.rand(1, 3, 224, 224)
        >>> level_outputs = self.forward(inputs)
        >>> for level_out in level_outputs:
        ...     print(tuple(level_out.shape))
        (1, 256, 56, 56)
        (1, 512, 28, 28)
        (1, 1024, 14, 14)
        (1, 2048, 7, 7)
    """

    arch_settings = {
        50: (SEBottleneck, (3, 4, 6, 3)),
        101: (SEBottleneck, (3, 4, 23, 3)),
        152: (SEBottleneck, (3, 8, 36, 3))
    }

    def __init__(self, depth, se_ratio=16, **kwargs):
        if depth not in self.arch_settings:
            raise KeyError(f'invalid depth {depth} for SEResNet')
        self.se_ratio = se_ratio
        super().__init__(depth, **kwargs)

    def make_res_layer(self, **kwargs):
        return ResLayer(se_ratio=self.se_ratio, **kwargs)