Spaces:
Runtime error
Runtime error
File size: 8,824 Bytes
cc0dd3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
# ------------------------------------------------------------------------------
# Copyright and License Information
# Adapted from
# https://github.com/microsoft/voxelpose-pytorch/blob/main/lib/models/v2v_net.py
# Original Licence: MIT License
# ------------------------------------------------------------------------------
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule
from mmengine.model import BaseModule
from mmpose.registry import MODELS
from .base_backbone import BaseBackbone
class Basic3DBlock(BaseModule):
"""A basic 3D convolutional block.
Args:
in_channels (int): Input channels of this block.
out_channels (int): Output channels of this block.
kernel_size (int): Kernel size of the convolution operation
conv_cfg (dict): Dictionary to construct and config conv layer.
Default: dict(type='Conv3d')
norm_cfg (dict): Dictionary to construct and config norm layer.
Default: dict(type='BN3d')
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: None
"""
def __init__(self,
in_channels,
out_channels,
kernel_size,
conv_cfg=dict(type='Conv3d'),
norm_cfg=dict(type='BN3d'),
init_cfg=None):
super(Basic3DBlock, self).__init__(init_cfg=init_cfg)
self.block = ConvModule(
in_channels,
out_channels,
kernel_size,
stride=1,
padding=((kernel_size - 1) // 2),
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
bias=True)
def forward(self, x):
"""Forward function."""
return self.block(x)
class Res3DBlock(BaseModule):
"""A residual 3D convolutional block.
Args:
in_channels (int): Input channels of this block.
out_channels (int): Output channels of this block.
kernel_size (int): Kernel size of the convolution operation
Default: 3
conv_cfg (dict): Dictionary to construct and config conv layer.
Default: dict(type='Conv3d')
norm_cfg (dict): Dictionary to construct and config norm layer.
Default: dict(type='BN3d')
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: None
"""
def __init__(self,
in_channels,
out_channels,
kernel_size=3,
conv_cfg=dict(type='Conv3d'),
norm_cfg=dict(type='BN3d'),
init_cfg=None):
super(Res3DBlock, self).__init__(init_cfg=init_cfg)
self.res_branch = nn.Sequential(
ConvModule(
in_channels,
out_channels,
kernel_size,
stride=1,
padding=((kernel_size - 1) // 2),
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
bias=True),
ConvModule(
out_channels,
out_channels,
kernel_size,
stride=1,
padding=((kernel_size - 1) // 2),
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=None,
bias=True))
if in_channels == out_channels:
self.skip_con = nn.Sequential()
else:
self.skip_con = ConvModule(
in_channels,
out_channels,
1,
stride=1,
padding=0,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=None,
bias=True)
def forward(self, x):
"""Forward function."""
res = self.res_branch(x)
skip = self.skip_con(x)
return F.relu(res + skip, True)
class Pool3DBlock(BaseModule):
"""A 3D max-pool block.
Args:
pool_size (int): Pool size of the 3D max-pool layer
"""
def __init__(self, pool_size):
super(Pool3DBlock, self).__init__()
self.pool_size = pool_size
def forward(self, x):
"""Forward function."""
return F.max_pool3d(
x, kernel_size=self.pool_size, stride=self.pool_size)
class Upsample3DBlock(BaseModule):
"""A 3D upsample block.
Args:
in_channels (int): Input channels of this block.
out_channels (int): Output channels of this block.
kernel_size (int): Kernel size of the transposed convolution operation.
Default: 2
stride (int): Kernel size of the transposed convolution operation.
Default: 2
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: None
"""
def __init__(self,
in_channels,
out_channels,
kernel_size=2,
stride=2,
init_cfg=None):
super(Upsample3DBlock, self).__init__(init_cfg=init_cfg)
assert kernel_size == 2
assert stride == 2
self.block = nn.Sequential(
nn.ConvTranspose3d(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=0,
output_padding=0), nn.BatchNorm3d(out_channels), nn.ReLU(True))
def forward(self, x):
"""Forward function."""
return self.block(x)
class EncoderDecorder(BaseModule):
"""An encoder-decoder block.
Args:
in_channels (int): Input channels of this block
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: None
"""
def __init__(self, in_channels=32, init_cfg=None):
super(EncoderDecorder, self).__init__(init_cfg=init_cfg)
self.encoder_pool1 = Pool3DBlock(2)
self.encoder_res1 = Res3DBlock(in_channels, in_channels * 2)
self.encoder_pool2 = Pool3DBlock(2)
self.encoder_res2 = Res3DBlock(in_channels * 2, in_channels * 4)
self.mid_res = Res3DBlock(in_channels * 4, in_channels * 4)
self.decoder_res2 = Res3DBlock(in_channels * 4, in_channels * 4)
self.decoder_upsample2 = Upsample3DBlock(in_channels * 4,
in_channels * 2, 2, 2)
self.decoder_res1 = Res3DBlock(in_channels * 2, in_channels * 2)
self.decoder_upsample1 = Upsample3DBlock(in_channels * 2, in_channels,
2, 2)
self.skip_res1 = Res3DBlock(in_channels, in_channels)
self.skip_res2 = Res3DBlock(in_channels * 2, in_channels * 2)
def forward(self, x):
"""Forward function."""
skip_x1 = self.skip_res1(x)
x = self.encoder_pool1(x)
x = self.encoder_res1(x)
skip_x2 = self.skip_res2(x)
x = self.encoder_pool2(x)
x = self.encoder_res2(x)
x = self.mid_res(x)
x = self.decoder_res2(x)
x = self.decoder_upsample2(x)
x = x + skip_x2
x = self.decoder_res1(x)
x = self.decoder_upsample1(x)
x = x + skip_x1
return x
@MODELS.register_module()
class V2VNet(BaseBackbone):
"""V2VNet.
Please refer to the `paper <https://arxiv.org/abs/1711.07399>`
for details.
Args:
input_channels (int):
Number of channels of the input feature volume.
output_channels (int):
Number of channels of the output volume.
mid_channels (int):
Input and output channels of the encoder-decoder block.
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: ``dict(
type='Normal',
std=0.001,
layer=['Conv3d', 'ConvTranspose3d']
)``
"""
def __init__(self,
input_channels,
output_channels,
mid_channels=32,
init_cfg=dict(
type='Normal',
std=0.001,
layer=['Conv3d', 'ConvTranspose3d'])):
super(V2VNet, self).__init__(init_cfg=init_cfg)
self.front_layers = nn.Sequential(
Basic3DBlock(input_channels, mid_channels // 2, 7),
Res3DBlock(mid_channels // 2, mid_channels),
)
self.encoder_decoder = EncoderDecorder(in_channels=mid_channels)
self.output_layer = nn.Conv3d(
mid_channels, output_channels, kernel_size=1, stride=1, padding=0)
def forward(self, x):
"""Forward function."""
x = self.front_layers(x)
x = self.encoder_decoder(x)
x = self.output_layer(x)
return (x, )
|