File size: 8,824 Bytes
cc0dd3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
# ------------------------------------------------------------------------------
# Copyright and License Information
# Adapted from
# https://github.com/microsoft/voxelpose-pytorch/blob/main/lib/models/v2v_net.py
# Original Licence: MIT License
# ------------------------------------------------------------------------------

import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule
from mmengine.model import BaseModule

from mmpose.registry import MODELS
from .base_backbone import BaseBackbone


class Basic3DBlock(BaseModule):
    """A basic 3D convolutional block.

    Args:
        in_channels (int): Input channels of this block.
        out_channels (int): Output channels of this block.
        kernel_size (int): Kernel size of the convolution operation
        conv_cfg (dict): Dictionary to construct and config conv layer.
            Default: dict(type='Conv3d')
        norm_cfg (dict): Dictionary to construct and config norm layer.
            Default: dict(type='BN3d')
        init_cfg (dict or list[dict], optional): Initialization config dict.
            Default: None
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 conv_cfg=dict(type='Conv3d'),
                 norm_cfg=dict(type='BN3d'),
                 init_cfg=None):
        super(Basic3DBlock, self).__init__(init_cfg=init_cfg)
        self.block = ConvModule(
            in_channels,
            out_channels,
            kernel_size,
            stride=1,
            padding=((kernel_size - 1) // 2),
            conv_cfg=conv_cfg,
            norm_cfg=norm_cfg,
            bias=True)

    def forward(self, x):
        """Forward function."""
        return self.block(x)


class Res3DBlock(BaseModule):
    """A residual 3D convolutional block.

    Args:
        in_channels (int): Input channels of this block.
        out_channels (int): Output channels of this block.
        kernel_size (int): Kernel size of the convolution operation
            Default: 3
        conv_cfg (dict): Dictionary to construct and config conv layer.
            Default: dict(type='Conv3d')
        norm_cfg (dict): Dictionary to construct and config norm layer.
            Default: dict(type='BN3d')
        init_cfg (dict or list[dict], optional): Initialization config dict.
            Default: None
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=3,
                 conv_cfg=dict(type='Conv3d'),
                 norm_cfg=dict(type='BN3d'),
                 init_cfg=None):
        super(Res3DBlock, self).__init__(init_cfg=init_cfg)
        self.res_branch = nn.Sequential(
            ConvModule(
                in_channels,
                out_channels,
                kernel_size,
                stride=1,
                padding=((kernel_size - 1) // 2),
                conv_cfg=conv_cfg,
                norm_cfg=norm_cfg,
                bias=True),
            ConvModule(
                out_channels,
                out_channels,
                kernel_size,
                stride=1,
                padding=((kernel_size - 1) // 2),
                conv_cfg=conv_cfg,
                norm_cfg=norm_cfg,
                act_cfg=None,
                bias=True))

        if in_channels == out_channels:
            self.skip_con = nn.Sequential()
        else:
            self.skip_con = ConvModule(
                in_channels,
                out_channels,
                1,
                stride=1,
                padding=0,
                conv_cfg=conv_cfg,
                norm_cfg=norm_cfg,
                act_cfg=None,
                bias=True)

    def forward(self, x):
        """Forward function."""
        res = self.res_branch(x)
        skip = self.skip_con(x)
        return F.relu(res + skip, True)


class Pool3DBlock(BaseModule):
    """A 3D max-pool block.

    Args:
        pool_size (int): Pool size of the 3D max-pool layer
    """

    def __init__(self, pool_size):
        super(Pool3DBlock, self).__init__()
        self.pool_size = pool_size

    def forward(self, x):
        """Forward function."""
        return F.max_pool3d(
            x, kernel_size=self.pool_size, stride=self.pool_size)


class Upsample3DBlock(BaseModule):
    """A 3D upsample block.

    Args:
        in_channels (int): Input channels of this block.
        out_channels (int): Output channels of this block.
        kernel_size (int): Kernel size of the transposed convolution operation.
            Default: 2
        stride (int):  Kernel size of the transposed convolution operation.
            Default: 2
        init_cfg (dict or list[dict], optional): Initialization config dict.
            Default: None
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=2,
                 stride=2,
                 init_cfg=None):
        super(Upsample3DBlock, self).__init__(init_cfg=init_cfg)
        assert kernel_size == 2
        assert stride == 2
        self.block = nn.Sequential(
            nn.ConvTranspose3d(
                in_channels,
                out_channels,
                kernel_size=kernel_size,
                stride=stride,
                padding=0,
                output_padding=0), nn.BatchNorm3d(out_channels), nn.ReLU(True))

    def forward(self, x):
        """Forward function."""
        return self.block(x)


class EncoderDecorder(BaseModule):
    """An encoder-decoder block.

    Args:
        in_channels (int): Input channels of this block
        init_cfg (dict or list[dict], optional): Initialization config dict.
            Default: None
    """

    def __init__(self, in_channels=32, init_cfg=None):
        super(EncoderDecorder, self).__init__(init_cfg=init_cfg)

        self.encoder_pool1 = Pool3DBlock(2)
        self.encoder_res1 = Res3DBlock(in_channels, in_channels * 2)
        self.encoder_pool2 = Pool3DBlock(2)
        self.encoder_res2 = Res3DBlock(in_channels * 2, in_channels * 4)

        self.mid_res = Res3DBlock(in_channels * 4, in_channels * 4)

        self.decoder_res2 = Res3DBlock(in_channels * 4, in_channels * 4)
        self.decoder_upsample2 = Upsample3DBlock(in_channels * 4,
                                                 in_channels * 2, 2, 2)
        self.decoder_res1 = Res3DBlock(in_channels * 2, in_channels * 2)
        self.decoder_upsample1 = Upsample3DBlock(in_channels * 2, in_channels,
                                                 2, 2)

        self.skip_res1 = Res3DBlock(in_channels, in_channels)
        self.skip_res2 = Res3DBlock(in_channels * 2, in_channels * 2)

    def forward(self, x):
        """Forward function."""
        skip_x1 = self.skip_res1(x)
        x = self.encoder_pool1(x)
        x = self.encoder_res1(x)

        skip_x2 = self.skip_res2(x)
        x = self.encoder_pool2(x)
        x = self.encoder_res2(x)

        x = self.mid_res(x)

        x = self.decoder_res2(x)
        x = self.decoder_upsample2(x)
        x = x + skip_x2

        x = self.decoder_res1(x)
        x = self.decoder_upsample1(x)
        x = x + skip_x1

        return x


@MODELS.register_module()
class V2VNet(BaseBackbone):
    """V2VNet.

    Please refer to the `paper <https://arxiv.org/abs/1711.07399>`
        for details.

    Args:
        input_channels (int):
            Number of channels of the input feature volume.
        output_channels (int):
            Number of channels of the output volume.
        mid_channels (int):
            Input and output channels of the encoder-decoder block.
        init_cfg (dict or list[dict], optional): Initialization config dict.
            Default: ``dict(
                type='Normal',
                std=0.001,
                layer=['Conv3d', 'ConvTranspose3d']
            )``
    """

    def __init__(self,
                 input_channels,
                 output_channels,
                 mid_channels=32,
                 init_cfg=dict(
                     type='Normal',
                     std=0.001,
                     layer=['Conv3d', 'ConvTranspose3d'])):
        super(V2VNet, self).__init__(init_cfg=init_cfg)

        self.front_layers = nn.Sequential(
            Basic3DBlock(input_channels, mid_channels // 2, 7),
            Res3DBlock(mid_channels // 2, mid_channels),
        )

        self.encoder_decoder = EncoderDecorder(in_channels=mid_channels)

        self.output_layer = nn.Conv3d(
            mid_channels, output_channels, kernel_size=1, stride=1, padding=0)

    def forward(self, x):
        """Forward function."""
        x = self.front_layers(x)
        x = self.encoder_decoder(x)
        x = self.output_layer(x)

        return (x, )