File size: 14,238 Bytes
cc0dd3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
from typing import Optional, Sequence, Tuple, Union

import torch
from mmcv.cnn import build_conv_layer
from mmengine.dist import get_dist_info
from mmengine.structures import PixelData
from torch import Tensor, nn

from mmpose.codecs.utils import get_simcc_normalized
from mmpose.evaluation.functional import simcc_pck_accuracy
from mmpose.models.utils.tta import flip_vectors
from mmpose.registry import KEYPOINT_CODECS, MODELS
from mmpose.utils.tensor_utils import to_numpy
from mmpose.utils.typing import (ConfigType, InstanceList, OptConfigType,
                                 OptSampleList)
from ..base_head import BaseHead

OptIntSeq = Optional[Sequence[int]]


@MODELS.register_module()
class SimCCHead(BaseHead):
    """Top-down heatmap head introduced in `SimCC`_ by Li et al (2022). The
    head is composed of a few deconvolutional layers followed by a fully-
    connected layer to generate 1d representation from low-resolution feature
    maps.

    Args:
        in_channels (int | sequence[int]): Number of channels in the input
            feature map
        out_channels (int): Number of channels in the output heatmap
        input_size (tuple): Input image size in shape [w, h]
        in_featuremap_size (int | sequence[int]): Size of input feature map
        simcc_split_ratio (float): Split ratio of pixels
        deconv_type (str, optional): The type of deconv head which should
            be one of the following options:

                - ``'heatmap'``: make deconv layers in `HeatmapHead`
                - ``'vipnas'``: make deconv layers in `ViPNASHead`

            Defaults to ``'Heatmap'``
        deconv_out_channels (sequence[int]): The output channel number of each
            deconv layer. Defaults to ``(256, 256, 256)``
        deconv_kernel_sizes (sequence[int | tuple], optional): The kernel size
            of each deconv layer. Each element should be either an integer for
            both height and width dimensions, or a tuple of two integers for
            the height and the width dimension respectively.Defaults to
            ``(4, 4, 4)``
        deconv_num_groups (Sequence[int], optional): The group number of each
            deconv layer. Defaults to ``(16, 16, 16)``
        conv_out_channels (sequence[int], optional): The output channel number
            of each intermediate conv layer. ``None`` means no intermediate
            conv layer between deconv layers and the final conv layer.
            Defaults to ``None``
        conv_kernel_sizes (sequence[int | tuple], optional): The kernel size
            of each intermediate conv layer. Defaults to ``None``
        final_layer (dict): Arguments of the final Conv2d layer.
            Defaults to ``dict(kernel_size=1)``
        loss (Config): Config of the keypoint loss. Defaults to use
            :class:`KLDiscretLoss`
        decoder (Config, optional): The decoder config that controls decoding
            keypoint coordinates from the network output. Defaults to ``None``
        init_cfg (Config, optional): Config to control the initialization. See
            :attr:`default_init_cfg` for default settings

    .. _`SimCC`: https://arxiv.org/abs/2107.03332
    """

    _version = 2

    def __init__(
        self,
        in_channels: Union[int, Sequence[int]],
        out_channels: int,
        input_size: Tuple[int, int],
        in_featuremap_size: Tuple[int, int],
        simcc_split_ratio: float = 2.0,
        deconv_type: str = 'heatmap',
        deconv_out_channels: OptIntSeq = (256, 256, 256),
        deconv_kernel_sizes: OptIntSeq = (4, 4, 4),
        deconv_num_groups: OptIntSeq = (16, 16, 16),
        conv_out_channels: OptIntSeq = None,
        conv_kernel_sizes: OptIntSeq = None,
        final_layer: dict = dict(kernel_size=1),
        loss: ConfigType = dict(type='KLDiscretLoss', use_target_weight=True),
        decoder: OptConfigType = None,
        init_cfg: OptConfigType = None,
    ):

        if init_cfg is None:
            init_cfg = self.default_init_cfg

        super().__init__(init_cfg)

        if deconv_type not in {'heatmap', 'vipnas'}:
            raise ValueError(
                f'{self.__class__.__name__} got invalid `deconv_type` value'
                f'{deconv_type}. Should be one of '
                '{"heatmap", "vipnas"}')

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.input_size = input_size
        self.in_featuremap_size = in_featuremap_size
        self.simcc_split_ratio = simcc_split_ratio
        self.loss_module = MODELS.build(loss)
        if decoder is not None:
            self.decoder = KEYPOINT_CODECS.build(decoder)
        else:
            self.decoder = None

        num_deconv = len(deconv_out_channels) if deconv_out_channels else 0
        if num_deconv != 0:
            self.heatmap_size = tuple(
                [s * (2**num_deconv) for s in in_featuremap_size])

            # deconv layers + 1x1 conv
            self.deconv_head = self._make_deconv_head(
                in_channels=in_channels,
                out_channels=out_channels,
                deconv_type=deconv_type,
                deconv_out_channels=deconv_out_channels,
                deconv_kernel_sizes=deconv_kernel_sizes,
                deconv_num_groups=deconv_num_groups,
                conv_out_channels=conv_out_channels,
                conv_kernel_sizes=conv_kernel_sizes,
                final_layer=final_layer)

            if final_layer is not None:
                in_channels = out_channels
            else:
                in_channels = deconv_out_channels[-1]

        else:
            self.deconv_head = None

            if final_layer is not None:
                cfg = dict(
                    type='Conv2d',
                    in_channels=in_channels,
                    out_channels=out_channels,
                    kernel_size=1)
                cfg.update(final_layer)
                self.final_layer = build_conv_layer(cfg)
            else:
                self.final_layer = None

            self.heatmap_size = in_featuremap_size

        # Define SimCC layers
        flatten_dims = self.heatmap_size[0] * self.heatmap_size[1]

        W = int(self.input_size[0] * self.simcc_split_ratio)
        H = int(self.input_size[1] * self.simcc_split_ratio)

        self.mlp_head_x = nn.Linear(flatten_dims, W)
        self.mlp_head_y = nn.Linear(flatten_dims, H)

    def _make_deconv_head(
        self,
        in_channels: Union[int, Sequence[int]],
        out_channels: int,
        deconv_type: str = 'heatmap',
        deconv_out_channels: OptIntSeq = (256, 256, 256),
        deconv_kernel_sizes: OptIntSeq = (4, 4, 4),
        deconv_num_groups: OptIntSeq = (16, 16, 16),
        conv_out_channels: OptIntSeq = None,
        conv_kernel_sizes: OptIntSeq = None,
        final_layer: dict = dict(kernel_size=1)
    ) -> nn.Module:
        """Create deconvolutional layers by given parameters."""

        if deconv_type == 'heatmap':
            deconv_head = MODELS.build(
                dict(
                    type='HeatmapHead',
                    in_channels=self.in_channels,
                    out_channels=out_channels,
                    deconv_out_channels=deconv_out_channels,
                    deconv_kernel_sizes=deconv_kernel_sizes,
                    conv_out_channels=conv_out_channels,
                    conv_kernel_sizes=conv_kernel_sizes,
                    final_layer=final_layer))
        else:
            deconv_head = MODELS.build(
                dict(
                    type='ViPNASHead',
                    in_channels=in_channels,
                    out_channels=out_channels,
                    deconv_out_channels=deconv_out_channels,
                    deconv_num_groups=deconv_num_groups,
                    conv_out_channels=conv_out_channels,
                    conv_kernel_sizes=conv_kernel_sizes,
                    final_layer=final_layer))

        return deconv_head

    def forward(self, feats: Tuple[Tensor]) -> Tuple[Tensor, Tensor]:
        """Forward the network. The input is multi scale feature maps and the
        output is the heatmap.

        Args:
            feats (Tuple[Tensor]): Multi scale feature maps.

        Returns:
            pred_x (Tensor): 1d representation of x.
            pred_y (Tensor): 1d representation of y.
        """
        if self.deconv_head is None:
            feats = feats[-1]
            if self.final_layer is not None:
                feats = self.final_layer(feats)
        else:
            feats = self.deconv_head(feats)

        # flatten the output heatmap
        x = torch.flatten(feats, 2)

        pred_x = self.mlp_head_x(x)
        pred_y = self.mlp_head_y(x)

        return pred_x, pred_y

    def predict(
        self,
        feats: Tuple[Tensor],
        batch_data_samples: OptSampleList,
        test_cfg: OptConfigType = {},
    ) -> InstanceList:
        """Predict results from features.

        Args:
            feats (Tuple[Tensor] | List[Tuple[Tensor]]): The multi-stage
                features (or multiple multi-stage features in TTA)
            batch_data_samples (List[:obj:`PoseDataSample`]): The batch
                data samples
            test_cfg (dict): The runtime config for testing process. Defaults
                to {}

        Returns:
            List[InstanceData]: The pose predictions, each contains
            the following fields:

                - keypoints (np.ndarray): predicted keypoint coordinates in
                    shape (num_instances, K, D) where K is the keypoint number
                    and D is the keypoint dimension
                - keypoint_scores (np.ndarray): predicted keypoint scores in
                    shape (num_instances, K)
                - keypoint_x_labels (np.ndarray, optional): The predicted 1-D
                    intensity distribution in the x direction
                - keypoint_y_labels (np.ndarray, optional): The predicted 1-D
                    intensity distribution in the y direction
        """

        if test_cfg.get('flip_test', False):
            # TTA: flip test -> feats = [orig, flipped]
            assert isinstance(feats, list) and len(feats) == 2
            flip_indices = batch_data_samples[0].metainfo['flip_indices']
            _feats, _feats_flip = feats

            _batch_pred_x, _batch_pred_y = self.forward(_feats)

            _batch_pred_x_flip, _batch_pred_y_flip = self.forward(_feats_flip)
            _batch_pred_x_flip, _batch_pred_y_flip = flip_vectors(
                _batch_pred_x_flip,
                _batch_pred_y_flip,
                flip_indices=flip_indices)

            batch_pred_x = (_batch_pred_x + _batch_pred_x_flip) * 0.5
            batch_pred_y = (_batch_pred_y + _batch_pred_y_flip) * 0.5
        else:
            batch_pred_x, batch_pred_y = self.forward(feats)

        preds = self.decode((batch_pred_x, batch_pred_y))

        if test_cfg.get('output_heatmaps', False):
            rank, _ = get_dist_info()
            if rank == 0:
                warnings.warn('The predicted simcc values are normalized for '
                              'visualization. This may cause discrepancy '
                              'between the keypoint scores and the 1D heatmaps'
                              '.')

            # normalize the predicted 1d distribution
            sigma = self.decoder.sigma
            batch_pred_x = get_simcc_normalized(batch_pred_x, sigma[0])
            batch_pred_y = get_simcc_normalized(batch_pred_y, sigma[1])

            B, K, _ = batch_pred_x.shape
            # B, K, Wx -> B, K, Wx, 1
            x = batch_pred_x.reshape(B, K, 1, -1)
            # B, K, Wy -> B, K, 1, Wy
            y = batch_pred_y.reshape(B, K, -1, 1)
            # B, K, Wx, Wy
            batch_heatmaps = torch.matmul(y, x)
            pred_fields = [
                PixelData(heatmaps=hm) for hm in batch_heatmaps.detach()
            ]

            for pred_instances, pred_x, pred_y in zip(preds,
                                                      to_numpy(batch_pred_x),
                                                      to_numpy(batch_pred_y)):

                pred_instances.keypoint_x_labels = pred_x[None]
                pred_instances.keypoint_y_labels = pred_y[None]

            return preds, pred_fields
        else:
            return preds

    def loss(
        self,
        feats: Tuple[Tensor],
        batch_data_samples: OptSampleList,
        train_cfg: OptConfigType = {},
    ) -> dict:
        """Calculate losses from a batch of inputs and data samples."""

        pred_x, pred_y = self.forward(feats)

        gt_x = torch.cat([
            d.gt_instance_labels.keypoint_x_labels for d in batch_data_samples
        ],
                         dim=0)
        gt_y = torch.cat([
            d.gt_instance_labels.keypoint_y_labels for d in batch_data_samples
        ],
                         dim=0)
        keypoint_weights = torch.cat(
            [
                d.gt_instance_labels.keypoint_weights
                for d in batch_data_samples
            ],
            dim=0,
        )

        pred_simcc = (pred_x, pred_y)
        gt_simcc = (gt_x, gt_y)

        # calculate losses
        losses = dict()
        loss = self.loss_module(pred_simcc, gt_simcc, keypoint_weights)

        losses.update(loss_kpt=loss)

        # calculate accuracy
        _, avg_acc, _ = simcc_pck_accuracy(
            output=to_numpy(pred_simcc),
            target=to_numpy(gt_simcc),
            simcc_split_ratio=self.simcc_split_ratio,
            mask=to_numpy(keypoint_weights) > 0,
        )

        acc_pose = torch.tensor(avg_acc, device=gt_x.device)
        losses.update(acc_pose=acc_pose)

        return losses

    @property
    def default_init_cfg(self):
        init_cfg = [
            dict(
                type='Normal', layer=['Conv2d', 'ConvTranspose2d'], std=0.001),
            dict(type='Constant', layer='BatchNorm2d', val=1),
            dict(type='Normal', layer=['Linear'], std=0.01, bias=0),
        ]
        return init_cfg