Spaces:
Runtime error
Runtime error
File size: 10,877 Bytes
cc0dd3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Optional, Sequence, Tuple, Union
import torch
from mmengine.structures import PixelData
from mmengine.utils import is_list_of
from torch import Tensor
from mmpose.models.utils.tta import aggregate_heatmaps, flip_heatmaps
from mmpose.registry import MODELS
from mmpose.utils.typing import (ConfigType, Features, OptConfigType,
OptSampleList, Predictions)
from .heatmap_head import HeatmapHead
OptIntSeq = Optional[Sequence[int]]
@MODELS.register_module()
class AssociativeEmbeddingHead(HeatmapHead):
def __init__(self,
in_channels: Union[int, Sequence[int]],
num_keypoints: int,
tag_dim: int = 1,
tag_per_keypoint: bool = True,
deconv_out_channels: OptIntSeq = (256, 256, 256),
deconv_kernel_sizes: OptIntSeq = (4, 4, 4),
conv_out_channels: OptIntSeq = None,
conv_kernel_sizes: OptIntSeq = None,
final_layer: dict = dict(kernel_size=1),
keypoint_loss: ConfigType = dict(type='KeypointMSELoss'),
tag_loss: ConfigType = dict(type='AssociativeEmbeddingLoss'),
decoder: OptConfigType = None,
init_cfg: OptConfigType = None):
if tag_per_keypoint:
out_channels = num_keypoints * (1 + tag_dim)
else:
out_channels = num_keypoints + tag_dim
loss = dict(
type='CombinedLoss',
losses=dict(keypoint_loss=keypoint_loss, tag_loss=tag_loss))
super().__init__(
in_channels=in_channels,
out_channels=out_channels,
deconv_out_channels=deconv_out_channels,
deconv_kernel_sizes=deconv_kernel_sizes,
conv_out_channels=conv_out_channels,
conv_kernel_sizes=conv_kernel_sizes,
final_layer=final_layer,
loss=loss,
decoder=decoder,
init_cfg=init_cfg)
self.num_keypoints = num_keypoints
self.tag_dim = tag_dim
self.tag_per_keypoint = tag_per_keypoint
def predict(self,
feats: Features,
batch_data_samples: OptSampleList,
test_cfg: ConfigType = {}) -> Predictions:
"""Predict results from features.
Args:
feats (Features): The features which could be in following forms:
- Tuple[Tensor]: multi-stage features from the backbone
- List[Tuple[Tensor]]: multiple features for TTA where either
`flip_test` or `multiscale_test` is applied
- List[List[Tuple[Tensor]]]: multiple features for TTA where
both `flip_test` and `multiscale_test` are applied
batch_data_samples (List[:obj:`PoseDataSample`]): The batch
data samples
test_cfg (dict): The runtime config for testing process. Defaults
to {}
Returns:
Union[InstanceList | Tuple[InstanceList | PixelDataList]]: If
``test_cfg['output_heatmap']==True``, return both pose and heatmap
prediction; otherwise only return the pose prediction.
The pose prediction is a list of ``InstanceData``, each contains
the following fields:
- keypoints (np.ndarray): predicted keypoint coordinates in
shape (num_instances, K, D) where K is the keypoint number
and D is the keypoint dimension
- keypoint_scores (np.ndarray): predicted keypoint scores in
shape (num_instances, K)
The heatmap prediction is a list of ``PixelData``, each contains
the following fields:
- heatmaps (Tensor): The predicted heatmaps in shape (K, h, w)
"""
# test configs
multiscale_test = test_cfg.get('multiscale_test', False)
flip_test = test_cfg.get('flip_test', False)
shift_heatmap = test_cfg.get('shift_heatmap', False)
align_corners = test_cfg.get('align_corners', False)
restore_heatmap_size = test_cfg.get('restore_heatmap_size', False)
output_heatmaps = test_cfg.get('output_heatmaps', False)
# enable multi-scale test
if multiscale_test:
# TTA: multi-scale test
assert is_list_of(feats, list if flip_test else tuple)
else:
assert is_list_of(feats, tuple if flip_test else Tensor)
feats = [feats]
# resize heatmaps to align with with input size
if restore_heatmap_size:
img_shape = batch_data_samples[0].metainfo['img_shape']
assert all(d.metainfo['img_shape'] == img_shape
for d in batch_data_samples)
img_h, img_w = img_shape
heatmap_size = (img_w, img_h)
else:
heatmap_size = None
multiscale_heatmaps = []
multiscale_tags = []
for scale_idx, _feats in enumerate(feats):
if not flip_test:
_heatmaps, _tags = self.forward(_feats)
else:
# TTA: flip test
assert isinstance(_feats, list) and len(_feats) == 2
flip_indices = batch_data_samples[0].metainfo['flip_indices']
# original
_feats_orig, _feats_flip = _feats
_heatmaps_orig, _tags_orig = self.forward(_feats_orig)
# flipped
_heatmaps_flip, _tags_flip = self.forward(_feats_flip)
_heatmaps_flip = flip_heatmaps(
_heatmaps_flip,
flip_mode='heatmap',
flip_indices=flip_indices,
shift_heatmap=shift_heatmap)
_tags_flip = self._flip_tags(
_tags_flip,
flip_indices=flip_indices,
shift_heatmap=shift_heatmap)
# aggregated heatmaps
_heatmaps = aggregate_heatmaps(
[_heatmaps_orig, _heatmaps_flip],
size=heatmap_size,
align_corners=align_corners,
mode='average')
# aggregated tags (only at original scale)
if scale_idx == 0:
_tags = aggregate_heatmaps([_tags_orig, _tags_flip],
size=heatmap_size,
align_corners=align_corners,
mode='concat')
else:
_tags = None
multiscale_heatmaps.append(_heatmaps)
multiscale_tags.append(_tags)
# aggregate multi-scale heatmaps
if len(feats) > 1:
batch_heatmaps = aggregate_heatmaps(
multiscale_heatmaps,
align_corners=align_corners,
mode='average')
else:
batch_heatmaps = multiscale_heatmaps[0]
# only keep tags at original scale
batch_tags = multiscale_tags[0]
batch_outputs = tuple([batch_heatmaps, batch_tags])
preds = self.decode(batch_outputs)
if output_heatmaps:
pred_fields = []
for _heatmaps, _tags in zip(batch_heatmaps.detach(),
batch_tags.detach()):
pred_fields.append(PixelData(heatmaps=_heatmaps, tags=_tags))
return preds, pred_fields
else:
return preds
def _flip_tags(self,
tags: Tensor,
flip_indices: List[int],
shift_heatmap: bool = True):
"""Flip the tagging heatmaps horizontally for test-time augmentation.
Args:
tags (Tensor): batched tagging heatmaps to flip
flip_indices (List[int]): The indices of each keypoint's symmetric
keypoint
shift_heatmap (bool): Shift the flipped heatmaps to align with the
original heatmaps and improve accuracy. Defaults to ``True``
Returns:
Tensor: flipped tagging heatmaps
"""
B, C, H, W = tags.shape
K = self.num_keypoints
L = self.tag_dim
tags = tags.flip(-1)
if self.tag_per_keypoint:
assert C == K * L
tags = tags.view(B, L, K, H, W)
tags = tags[:, :, flip_indices]
tags = tags.view(B, C, H, W)
if shift_heatmap:
tags[..., 1:] = tags[..., :-1].clone()
return tags
def forward(self, feats: Tuple[Tensor]) -> Tuple[Tensor, Tensor]:
"""Forward the network. The input is multi scale feature maps and the
output is the heatmaps and tags.
Args:
feats (Tuple[Tensor]): Multi scale feature maps.
Returns:
tuple:
- heatmaps (Tensor): output heatmaps
- tags (Tensor): output tags
"""
output = super().forward(feats)
heatmaps = output[:, :self.num_keypoints]
tags = output[:, self.num_keypoints:]
return heatmaps, tags
def loss(self,
feats: Tuple[Tensor],
batch_data_samples: OptSampleList,
train_cfg: ConfigType = {}) -> dict:
"""Calculate losses from a batch of inputs and data samples.
Args:
feats (Tuple[Tensor]): The multi-stage features
batch_data_samples (List[:obj:`PoseDataSample`]): The batch
data samples
train_cfg (dict): The runtime config for training process.
Defaults to {}
Returns:
dict: A dictionary of losses.
"""
pred_heatmaps, pred_tags = self.forward(feats)
if not self.tag_per_keypoint:
pred_tags = pred_tags.repeat((1, self.num_keypoints, 1, 1))
gt_heatmaps = torch.stack(
[d.gt_fields.heatmaps for d in batch_data_samples])
gt_masks = torch.stack(
[d.gt_fields.heatmap_mask for d in batch_data_samples])
keypoint_weights = torch.cat([
d.gt_instance_labels.keypoint_weights for d in batch_data_samples
])
keypoint_indices = [
d.gt_instance_labels.keypoint_indices for d in batch_data_samples
]
loss_kpt = self.loss_module.keypoint_loss(pred_heatmaps, gt_heatmaps,
keypoint_weights, gt_masks)
loss_pull, loss_push = self.loss_module.tag_loss(
pred_tags, keypoint_indices)
losses = {
'loss_kpt': loss_kpt,
'loss_pull': loss_pull,
'loss_push': loss_push
}
return losses
|