Spaces:
Runtime error
Runtime error
File size: 12,465 Bytes
cc0dd3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Optional, Sequence, Union
import torch
from mmcv.cnn import build_conv_layer, build_upsample_layer
from mmengine.structures import PixelData
from torch import Tensor, nn
from mmpose.evaluation.functional import pose_pck_accuracy
from mmpose.models.utils.tta import flip_heatmaps
from mmpose.registry import KEYPOINT_CODECS, MODELS
from mmpose.utils.tensor_utils import to_numpy
from mmpose.utils.typing import (Features, MultiConfig, OptConfigType,
OptSampleList, Predictions)
from ..base_head import BaseHead
OptIntSeq = Optional[Sequence[int]]
@MODELS.register_module()
class CPMHead(BaseHead):
"""Multi-stage heatmap head introduced in `Convolutional Pose Machines`_ by
Wei et al (2016) and used by `Stacked Hourglass Networks`_ by Newell et al
(2016). The head consists of multiple branches, each of which has some
deconv layers and a simple conv2d layer.
Args:
in_channels (int | Sequence[int]): Number of channels in the input
feature maps.
out_channels (int): Number of channels in the output heatmaps.
num_stages (int): Number of stages.
deconv_out_channels (Sequence[int], optional): The output channel
number of each deconv layer. Defaults to ``(256, 256, 256)``
deconv_kernel_sizes (Sequence[int | tuple], optional): The kernel size
of each deconv layer. Each element should be either an integer for
both height and width dimensions, or a tuple of two integers for
the height and the width dimension respectively.
Defaults to ``(4, 4, 4)``
final_layer (dict): Arguments of the final Conv2d layer.
Defaults to ``dict(kernel_size=1)``
loss (Config | List[Config]): Config of the keypoint loss of different
stages. Defaults to use :class:`KeypointMSELoss`.
decoder (Config, optional): The decoder config that controls decoding
keypoint coordinates from the network output. Defaults to ``None``
init_cfg (Config, optional): Config to control the initialization. See
:attr:`default_init_cfg` for default settings
.. _`Convolutional Pose Machines`: https://arxiv.org/abs/1602.00134
.. _`Stacked Hourglass Networks`: https://arxiv.org/abs/1603.06937
"""
_version = 2
def __init__(self,
in_channels: Union[int, Sequence[int]],
out_channels: int,
num_stages: int,
deconv_out_channels: OptIntSeq = None,
deconv_kernel_sizes: OptIntSeq = None,
final_layer: dict = dict(kernel_size=1),
loss: MultiConfig = dict(
type='KeypointMSELoss', use_target_weight=True),
decoder: OptConfigType = None,
init_cfg: OptConfigType = None):
if init_cfg is None:
init_cfg = self.default_init_cfg
super().__init__(init_cfg)
self.num_stages = num_stages
self.in_channels = in_channels
self.out_channels = out_channels
if isinstance(loss, list):
if len(loss) != num_stages:
raise ValueError(
f'The length of loss_module({len(loss)}) did not match '
f'`num_stages`({num_stages})')
self.loss_module = nn.ModuleList(
MODELS.build(_loss) for _loss in loss)
else:
self.loss_module = MODELS.build(loss)
if decoder is not None:
self.decoder = KEYPOINT_CODECS.build(decoder)
else:
self.decoder = None
# build multi-stage deconv layers
self.multi_deconv_layers = nn.ModuleList([])
if deconv_out_channels:
if deconv_kernel_sizes is None or len(deconv_out_channels) != len(
deconv_kernel_sizes):
raise ValueError(
'"deconv_out_channels" and "deconv_kernel_sizes" should '
'be integer sequences with the same length. Got '
f'mismatched lengths {deconv_out_channels} and '
f'{deconv_kernel_sizes}')
for _ in range(self.num_stages):
deconv_layers = self._make_deconv_layers(
in_channels=in_channels,
layer_out_channels=deconv_out_channels,
layer_kernel_sizes=deconv_kernel_sizes,
)
self.multi_deconv_layers.append(deconv_layers)
in_channels = deconv_out_channels[-1]
else:
for _ in range(self.num_stages):
self.multi_deconv_layers.append(nn.Identity())
# build multi-stage final layers
self.multi_final_layers = nn.ModuleList([])
if final_layer is not None:
cfg = dict(
type='Conv2d',
in_channels=in_channels,
out_channels=out_channels,
kernel_size=1)
cfg.update(final_layer)
for _ in range(self.num_stages):
self.multi_final_layers.append(build_conv_layer(cfg))
else:
for _ in range(self.num_stages):
self.multi_final_layers.append(nn.Identity())
@property
def default_init_cfg(self):
init_cfg = [
dict(
type='Normal', layer=['Conv2d', 'ConvTranspose2d'], std=0.001),
dict(type='Constant', layer='BatchNorm2d', val=1)
]
return init_cfg
def _make_deconv_layers(self, in_channels: int,
layer_out_channels: Sequence[int],
layer_kernel_sizes: Sequence[int]) -> nn.Module:
"""Create deconvolutional layers by given parameters."""
layers = []
for out_channels, kernel_size in zip(layer_out_channels,
layer_kernel_sizes):
if kernel_size == 4:
padding = 1
output_padding = 0
elif kernel_size == 3:
padding = 1
output_padding = 1
elif kernel_size == 2:
padding = 0
output_padding = 0
else:
raise ValueError(f'Unsupported kernel size {kernel_size} for'
'deconvlutional layers in '
f'{self.__class__.__name__}')
cfg = dict(
type='deconv',
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=2,
padding=padding,
output_padding=output_padding,
bias=False)
layers.append(build_upsample_layer(cfg))
layers.append(nn.BatchNorm2d(num_features=out_channels))
layers.append(nn.ReLU(inplace=True))
in_channels = out_channels
return nn.Sequential(*layers)
def forward(self, feats: Sequence[Tensor]) -> List[Tensor]:
"""Forward the network. The input is multi-stage feature maps and the
output is a list of heatmaps from multiple stages.
Args:
feats (Sequence[Tensor]): Multi-stage feature maps.
Returns:
List[Tensor]: A list of output heatmaps from multiple stages.
"""
out = []
assert len(feats) == self.num_stages, (
f'The length of feature maps did not match the '
f'`num_stages` in {self.__class__.__name__}')
for i in range(self.num_stages):
y = self.multi_deconv_layers[i](feats[i])
y = self.multi_final_layers[i](y)
out.append(y)
return out
def predict(self,
feats: Features,
batch_data_samples: OptSampleList,
test_cfg: OptConfigType = {}) -> Predictions:
"""Predict results from multi-stage feature maps.
Args:
feats (Tuple[Tensor] | List[Tuple[Tensor]]): The multi-stage
features (or multiple multi-stage features in TTA)
batch_data_samples (List[:obj:`PoseDataSample`]): The batch
data samples
test_cfg (dict): The runtime config for testing process. Defaults
to {}
Returns:
Union[InstanceList | Tuple[InstanceList | PixelDataList]]: If
``test_cfg['output_heatmap']==True``, return both pose and heatmap
prediction; otherwise only return the pose prediction.
The pose prediction is a list of ``InstanceData``, each contains
the following fields:
- keypoints (np.ndarray): predicted keypoint coordinates in
shape (num_instances, K, D) where K is the keypoint number
and D is the keypoint dimension
- keypoint_scores (np.ndarray): predicted keypoint scores in
shape (num_instances, K)
The heatmap prediction is a list of ``PixelData``, each contains
the following fields:
- heatmaps (Tensor): The predicted heatmaps in shape (K, h, w)
"""
if test_cfg.get('flip_test', False):
# TTA: flip test
assert isinstance(feats, list) and len(feats) == 2
flip_indices = batch_data_samples[0].metainfo['flip_indices']
_feats, _feats_flip = feats
_batch_heatmaps = self.forward(_feats)[-1]
_batch_heatmaps_flip = flip_heatmaps(
self.forward(_feats_flip)[-1],
flip_mode=test_cfg.get('flip_mode', 'heatmap'),
flip_indices=flip_indices,
shift_heatmap=test_cfg.get('shift_heatmap', False))
batch_heatmaps = (_batch_heatmaps + _batch_heatmaps_flip) * 0.5
else:
multi_stage_heatmaps = self.forward(feats)
batch_heatmaps = multi_stage_heatmaps[-1]
preds = self.decode(batch_heatmaps)
if test_cfg.get('output_heatmaps', False):
pred_fields = [
PixelData(heatmaps=hm) for hm in batch_heatmaps.detach()
]
return preds, pred_fields
else:
return preds
def loss(self,
feats: Sequence[Tensor],
batch_data_samples: OptSampleList,
train_cfg: OptConfigType = {}) -> dict:
"""Calculate losses from a batch of inputs and data samples.
Args:
feats (Sequence[Tensor]): Multi-stage feature maps.
batch_data_samples (List[:obj:`PoseDataSample`]): The Data
Samples. It usually includes information such as
`gt_instances`.
train_cfg (Config, optional): The training config.
Returns:
dict: A dictionary of loss components.
"""
multi_stage_pred_heatmaps = self.forward(feats)
gt_heatmaps = torch.stack(
[d.gt_fields.heatmaps for d in batch_data_samples])
keypoint_weights = torch.cat([
d.gt_instance_labels.keypoint_weights for d in batch_data_samples
])
# calculate losses over multiple stages
losses = dict()
for i in range(self.num_stages):
if isinstance(self.loss_module, nn.ModuleList):
# use different loss_module over different stages
loss_func = self.loss_module[i]
else:
# use the same loss_module over different stages
loss_func = self.loss_module
# the `gt_heatmaps` and `keypoint_weights` used to calculate loss
# for different stages are the same
loss_i = loss_func(multi_stage_pred_heatmaps[i], gt_heatmaps,
keypoint_weights)
if 'loss_kpt' not in losses:
losses['loss_kpt'] = loss_i
else:
losses['loss_kpt'] += loss_i
# calculate accuracy
_, avg_acc, _ = pose_pck_accuracy(
output=to_numpy(multi_stage_pred_heatmaps[-1]),
target=to_numpy(gt_heatmaps),
mask=to_numpy(keypoint_weights) > 0)
acc_pose = torch.tensor(avg_acc, device=gt_heatmaps.device)
losses.update(acc_pose=acc_pose)
return losses
|