Spaces:
Runtime error
Runtime error
File size: 16,505 Bytes
cc0dd3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
# Copyright (c) OpenMMLab. All rights reserved.
import copy
from typing import List, Optional, Sequence, Union
import torch
from mmcv.cnn import (ConvModule, DepthwiseSeparableConvModule, Linear,
build_activation_layer, build_norm_layer)
from mmengine.structures import PixelData
from torch import Tensor, nn
from mmpose.evaluation.functional import pose_pck_accuracy
from mmpose.models.utils.tta import flip_heatmaps
from mmpose.registry import KEYPOINT_CODECS, MODELS
from mmpose.utils.tensor_utils import to_numpy
from mmpose.utils.typing import (ConfigType, MultiConfig, OptConfigType,
OptSampleList, Predictions)
from ..base_head import BaseHead
OptIntSeq = Optional[Sequence[int]]
MSMUFeatures = Sequence[Sequence[Tensor]] # Multi-stage multi-unit features
class PRM(nn.Module):
"""Pose Refine Machine.
Please refer to "Learning Delicate Local Representations
for Multi-Person Pose Estimation" (ECCV 2020).
Args:
out_channels (int): Number of the output channels, equals to
the number of keypoints.
norm_cfg (Config): Config to construct the norm layer.
Defaults to ``dict(type='BN')``
"""
def __init__(self,
out_channels: int,
norm_cfg: ConfigType = dict(type='BN')):
super().__init__()
# Protect mutable default arguments
norm_cfg = copy.deepcopy(norm_cfg)
self.out_channels = out_channels
self.global_pooling = nn.AdaptiveAvgPool2d((1, 1))
self.middle_path = nn.Sequential(
Linear(self.out_channels, self.out_channels),
build_norm_layer(dict(type='BN1d'), out_channels)[1],
build_activation_layer(dict(type='ReLU')),
Linear(self.out_channels, self.out_channels),
build_norm_layer(dict(type='BN1d'), out_channels)[1],
build_activation_layer(dict(type='ReLU')),
build_activation_layer(dict(type='Sigmoid')))
self.bottom_path = nn.Sequential(
ConvModule(
self.out_channels,
self.out_channels,
kernel_size=1,
stride=1,
padding=0,
norm_cfg=norm_cfg,
inplace=False),
DepthwiseSeparableConvModule(
self.out_channels,
1,
kernel_size=9,
stride=1,
padding=4,
norm_cfg=norm_cfg,
inplace=False), build_activation_layer(dict(type='Sigmoid')))
self.conv_bn_relu_prm_1 = ConvModule(
self.out_channels,
self.out_channels,
kernel_size=3,
stride=1,
padding=1,
norm_cfg=norm_cfg,
inplace=False)
def forward(self, x: Tensor) -> Tensor:
"""Forward the network. The input heatmaps will be refined.
Args:
x (Tensor): The input heatmaps.
Returns:
Tensor: output heatmaps.
"""
out = self.conv_bn_relu_prm_1(x)
out_1 = out
out_2 = self.global_pooling(out_1)
out_2 = out_2.view(out_2.size(0), -1)
out_2 = self.middle_path(out_2)
out_2 = out_2.unsqueeze(2)
out_2 = out_2.unsqueeze(3)
out_3 = self.bottom_path(out_1)
out = out_1 * (1 + out_2 * out_3)
return out
class PredictHeatmap(nn.Module):
"""Predict the heatmap for an input feature.
Args:
unit_channels (int): Number of input channels.
out_channels (int): Number of output channels.
out_shape (tuple): Shape of the output heatmaps.
use_prm (bool): Whether to use pose refine machine. Default: False.
norm_cfg (Config): Config to construct the norm layer.
Defaults to ``dict(type='BN')``
"""
def __init__(self,
unit_channels: int,
out_channels: int,
out_shape: tuple,
use_prm: bool = False,
norm_cfg: ConfigType = dict(type='BN')):
super().__init__()
# Protect mutable default arguments
norm_cfg = copy.deepcopy(norm_cfg)
self.unit_channels = unit_channels
self.out_channels = out_channels
self.out_shape = out_shape
self.use_prm = use_prm
if use_prm:
self.prm = PRM(out_channels, norm_cfg=norm_cfg)
self.conv_layers = nn.Sequential(
ConvModule(
unit_channels,
unit_channels,
kernel_size=1,
stride=1,
padding=0,
norm_cfg=norm_cfg,
inplace=False),
ConvModule(
unit_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1,
norm_cfg=norm_cfg,
act_cfg=None,
inplace=False))
def forward(self, feature: Tensor) -> Tensor:
"""Forward the network.
Args:
feature (Tensor): The input feature maps.
Returns:
Tensor: output heatmaps.
"""
feature = self.conv_layers(feature)
output = nn.functional.interpolate(
feature, size=self.out_shape, mode='bilinear', align_corners=True)
if self.use_prm:
output = self.prm(output)
return output
@MODELS.register_module()
class MSPNHead(BaseHead):
"""Multi-stage multi-unit heatmap head introduced in `Multi-Stage Pose
estimation Network (MSPN)`_ by Li et al (2019), and used by `Residual Steps
Networks (RSN)`_ by Cai et al (2020). The head consists of multiple stages
and each stage consists of multiple units. Each unit of each stage has some
conv layers.
Args:
num_stages (int): Number of stages.
num_units (int): Number of units in each stage.
out_shape (tuple): The output shape of the output heatmaps.
unit_channels (int): Number of input channels.
out_channels (int): Number of output channels.
out_shape (tuple): Shape of the output heatmaps.
use_prm (bool): Whether to use pose refine machine (PRM).
Defaults to ``False``.
norm_cfg (Config): Config to construct the norm layer.
Defaults to ``dict(type='BN')``
loss (Config | List[Config]): Config of the keypoint loss for
different stages and different units.
Defaults to use :class:`KeypointMSELoss`.
level_indices (Sequence[int]): The indices that specified the level
of target heatmaps.
decoder (Config, optional): The decoder config that controls decoding
keypoint coordinates from the network output. Defaults to ``None``
init_cfg (Config, optional): Config to control the initialization. See
:attr:`default_init_cfg` for default settings
.. _`MSPN`: https://arxiv.org/abs/1901.00148
.. _`RSN`: https://arxiv.org/abs/2003.04030
"""
_version = 2
def __init__(self,
num_stages: int = 4,
num_units: int = 4,
out_shape: tuple = (64, 48),
unit_channels: int = 256,
out_channels: int = 17,
use_prm: bool = False,
norm_cfg: ConfigType = dict(type='BN'),
level_indices: Sequence[int] = [],
loss: MultiConfig = dict(
type='KeypointMSELoss', use_target_weight=True),
decoder: OptConfigType = None,
init_cfg: OptConfigType = None):
if init_cfg is None:
init_cfg = self.default_init_cfg
super().__init__(init_cfg)
self.num_stages = num_stages
self.num_units = num_units
self.out_shape = out_shape
self.unit_channels = unit_channels
self.out_channels = out_channels
if len(level_indices) != num_stages * num_units:
raise ValueError(
f'The length of level_indices({len(level_indices)}) did not '
f'match `num_stages`({num_stages}) * `num_units`({num_units})')
self.level_indices = level_indices
if isinstance(loss, list) and len(loss) != num_stages * num_units:
raise ValueError(
f'The length of loss_module({len(loss)}) did not match '
f'`num_stages`({num_stages}) * `num_units`({num_units})')
if isinstance(loss, list):
if len(loss) != num_stages * num_units:
raise ValueError(
f'The length of loss_module({len(loss)}) did not match '
f'`num_stages`({num_stages}) * `num_units`({num_units})')
self.loss_module = nn.ModuleList(
MODELS.build(_loss) for _loss in loss)
else:
self.loss_module = MODELS.build(loss)
if decoder is not None:
self.decoder = KEYPOINT_CODECS.build(decoder)
else:
self.decoder = None
# Protect mutable default arguments
norm_cfg = copy.deepcopy(norm_cfg)
self.predict_layers = nn.ModuleList([])
for i in range(self.num_stages):
for j in range(self.num_units):
self.predict_layers.append(
PredictHeatmap(
unit_channels,
out_channels,
out_shape,
use_prm,
norm_cfg=norm_cfg))
@property
def default_init_cfg(self):
"""Default config for weight initialization."""
init_cfg = [
dict(type='Kaiming', layer='Conv2d'),
dict(type='Normal', layer='Linear', std=0.01),
dict(type='Constant', layer='BatchNorm2d', val=1),
]
return init_cfg
def forward(self, feats: Sequence[Sequence[Tensor]]) -> List[Tensor]:
"""Forward the network. The input is multi-stage multi-unit feature
maps and the output is a list of heatmaps from multiple stages.
Args:
feats (Sequence[Sequence[Tensor]]): Feature maps from multiple
stages and units.
Returns:
List[Tensor]: A list of output heatmaps from multiple stages
and units.
"""
out = []
assert len(feats) == self.num_stages, (
f'The length of feature maps did not match the '
f'`num_stages` in {self.__class__.__name__}')
for feat in feats:
assert len(feat) == self.num_units, (
f'The length of feature maps did not match the '
f'`num_units` in {self.__class__.__name__}')
for f in feat:
assert f.shape[1] == self.unit_channels, (
f'The number of feature map channels did not match the '
f'`unit_channels` in {self.__class__.__name__}')
for i in range(self.num_stages):
for j in range(self.num_units):
y = self.predict_layers[i * self.num_units + j](feats[i][j])
out.append(y)
return out
def predict(self,
feats: Union[MSMUFeatures, List[MSMUFeatures]],
batch_data_samples: OptSampleList,
test_cfg: OptConfigType = {}) -> Predictions:
"""Predict results from multi-stage feature maps.
Args:
feats (Sequence[Sequence[Tensor]]): Multi-stage multi-unit
features (or multiple MSMU features for TTA)
batch_data_samples (List[:obj:`PoseDataSample`]): The Data
Samples. It usually includes information such as
`gt_instance_labels`.
test_cfg (Config, optional): The testing/inference config
Returns:
Union[InstanceList | Tuple[InstanceList | PixelDataList]]: If
``test_cfg['output_heatmap']==True``, return both pose and heatmap
prediction; otherwise only return the pose prediction.
The pose prediction is a list of ``InstanceData``, each contains
the following fields:
- keypoints (np.ndarray): predicted keypoint coordinates in
shape (num_instances, K, D) where K is the keypoint number
and D is the keypoint dimension
- keypoint_scores (np.ndarray): predicted keypoint scores in
shape (num_instances, K)
The heatmap prediction is a list of ``PixelData``, each contains
the following fields:
- heatmaps (Tensor): The predicted heatmaps in shape (K, h, w)
"""
# multi-stage multi-unit batch heatmaps
if test_cfg.get('flip_test', False):
# TTA: flip test
assert isinstance(feats, list) and len(feats) == 2
flip_indices = batch_data_samples[0].metainfo['flip_indices']
_feats, _feats_flip = feats
_batch_heatmaps = self.forward(_feats)[-1]
_batch_heatmaps_flip = flip_heatmaps(
self.forward(_feats_flip)[-1],
flip_mode=test_cfg.get('flip_mode', 'heatmap'),
flip_indices=flip_indices,
shift_heatmap=test_cfg.get('shift_heatmap', False))
batch_heatmaps = (_batch_heatmaps + _batch_heatmaps_flip) * 0.5
else:
msmu_batch_heatmaps = self.forward(feats)
batch_heatmaps = msmu_batch_heatmaps[-1]
preds = self.decode(batch_heatmaps)
if test_cfg.get('output_heatmaps', False):
pred_fields = [
PixelData(heatmaps=hm) for hm in batch_heatmaps.detach()
]
return preds, pred_fields
else:
return preds
def loss(self,
feats: MSMUFeatures,
batch_data_samples: OptSampleList,
train_cfg: OptConfigType = {}) -> dict:
"""Calculate losses from a batch of inputs and data samples.
Note:
- batch_size: B
- num_output_heatmap_levels: L
- num_keypoints: K
- heatmaps height: H
- heatmaps weight: W
- num_instances: N (usually 1 in topdown heatmap heads)
Args:
feats (Sequence[Sequence[Tensor]]): Feature maps from multiple
stages and units
batch_data_samples (List[:obj:`PoseDataSample`]): The Data
Samples. It usually includes information such as
`gt_instance_labels` and `gt_fields`.
train_cfg (Config, optional): The training config
Returns:
dict: A dictionary of loss components.
"""
# multi-stage multi-unit predict heatmaps
msmu_pred_heatmaps = self.forward(feats)
keypoint_weights = torch.cat([
d.gt_instance_labels.keypoint_weights for d in batch_data_samples
]) # shape: [B*N, L, K]
# calculate losses over multiple stages and multiple units
losses = dict()
for i in range(self.num_stages * self.num_units):
if isinstance(self.loss_module, nn.ModuleList):
# use different loss_module over different stages and units
loss_func = self.loss_module[i]
else:
# use the same loss_module over different stages and units
loss_func = self.loss_module
# select `gt_heatmaps` and `keypoint_weights` for different level
# according to `self.level_indices` to calculate loss
gt_heatmaps = torch.stack([
d.gt_fields[self.level_indices[i]].heatmaps
for d in batch_data_samples
])
loss_i = loss_func(msmu_pred_heatmaps[i], gt_heatmaps,
keypoint_weights[:, self.level_indices[i]])
if 'loss_kpt' not in losses:
losses['loss_kpt'] = loss_i
else:
losses['loss_kpt'] += loss_i
# calculate accuracy
_, avg_acc, _ = pose_pck_accuracy(
output=to_numpy(msmu_pred_heatmaps[-1]),
target=to_numpy(gt_heatmaps),
mask=to_numpy(keypoint_weights[:, -1]) > 0)
acc_pose = torch.tensor(avg_acc, device=gt_heatmaps.device)
losses.update(acc_pose=acc_pose)
return losses
|