File size: 13,301 Bytes
cc0dd3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
# Copyright (c) OpenMMLab. All rights reserved.

from typing import Optional, Sequence, Tuple, Union

import numpy as np
import torch
import torch.nn.functional as F
from mmcv.cnn import build_conv_layer
from mmengine.structures import PixelData
from torch import Tensor, nn

from mmpose.evaluation.functional import keypoint_pck_accuracy
from mmpose.models.utils.tta import flip_coordinates, flip_heatmaps
from mmpose.registry import KEYPOINT_CODECS, MODELS
from mmpose.utils.tensor_utils import to_numpy
from mmpose.utils.typing import (ConfigType, OptConfigType, OptSampleList,
                                 Predictions)
from .. import HeatmapHead
from ..base_head import BaseHead

OptIntSeq = Optional[Sequence[int]]


@MODELS.register_module()
class IntegralRegressionHead(BaseHead):
    """Top-down integral regression head introduced in `IPR`_ by Xiao et
    al(2018). The head contains a differentiable spatial to numerical transform
    (DSNT) layer that do soft-argmax operation on the predicted heatmaps to
    regress the coordinates.

    This head is used for algorithms that only supervise the coordinates.

    Args:
        in_channels (int | sequence[int]): Number of input channels
        in_featuremap_size (int | sequence[int]): Size of input feature map
        num_joints (int): Number of joints
        debias (bool): Whether to remove the bias of Integral Pose Regression.
            see `Removing the Bias of Integral Pose Regression`_ by Gu et al
            (2021). Defaults to ``False``.
        beta (float): A smoothing parameter in softmax. Defaults to ``1.0``.
        deconv_out_channels (sequence[int]): The output channel number of each
            deconv layer. Defaults to ``(256, 256, 256)``
        deconv_kernel_sizes (sequence[int | tuple], optional): The kernel size
            of each deconv layer. Each element should be either an integer for
            both height and width dimensions, or a tuple of two integers for
            the height and the width dimension respectively.Defaults to
            ``(4, 4, 4)``
        conv_out_channels (sequence[int], optional): The output channel number
            of each intermediate conv layer. ``None`` means no intermediate
            conv layer between deconv layers and the final conv layer.
            Defaults to ``None``
        conv_kernel_sizes (sequence[int | tuple], optional): The kernel size
            of each intermediate conv layer. Defaults to ``None``
        final_layer (dict): Arguments of the final Conv2d layer.
            Defaults to ``dict(kernel_size=1)``
        loss (Config): Config for keypoint loss. Defaults to use
            :class:`SmoothL1Loss`
        decoder (Config, optional): The decoder config that controls decoding
            keypoint coordinates from the network output. Defaults to ``None``
        init_cfg (Config, optional): Config to control the initialization. See
            :attr:`default_init_cfg` for default settings

    .. _`IPR`: https://arxiv.org/abs/1711.08229
    .. _`Debias`:
    """

    _version = 2

    def __init__(self,
                 in_channels: Union[int, Sequence[int]],
                 in_featuremap_size: Tuple[int, int],
                 num_joints: int,
                 debias: bool = False,
                 beta: float = 1.0,
                 deconv_out_channels: OptIntSeq = (256, 256, 256),
                 deconv_kernel_sizes: OptIntSeq = (4, 4, 4),
                 conv_out_channels: OptIntSeq = None,
                 conv_kernel_sizes: OptIntSeq = None,
                 final_layer: dict = dict(kernel_size=1),
                 loss: ConfigType = dict(
                     type='SmoothL1Loss', use_target_weight=True),
                 decoder: OptConfigType = None,
                 init_cfg: OptConfigType = None):

        if init_cfg is None:
            init_cfg = self.default_init_cfg

        super().__init__(init_cfg)

        self.in_channels = in_channels
        self.num_joints = num_joints
        self.debias = debias
        self.beta = beta
        self.loss_module = MODELS.build(loss)
        if decoder is not None:
            self.decoder = KEYPOINT_CODECS.build(decoder)
        else:
            self.decoder = None

        num_deconv = len(deconv_out_channels) if deconv_out_channels else 0
        if num_deconv != 0:

            self.heatmap_size = tuple(
                [s * (2**num_deconv) for s in in_featuremap_size])

            # deconv layers + 1x1 conv
            self.simplebaseline_head = HeatmapHead(
                in_channels=in_channels,
                out_channels=num_joints,
                deconv_out_channels=deconv_out_channels,
                deconv_kernel_sizes=deconv_kernel_sizes,
                conv_out_channels=conv_out_channels,
                conv_kernel_sizes=conv_kernel_sizes,
                final_layer=final_layer)

            if final_layer is not None:
                in_channels = num_joints
            else:
                in_channels = deconv_out_channels[-1]

        else:
            self.simplebaseline_head = None

            if final_layer is not None:
                cfg = dict(
                    type='Conv2d',
                    in_channels=in_channels,
                    out_channels=num_joints,
                    kernel_size=1)
                cfg.update(final_layer)
                self.final_layer = build_conv_layer(cfg)
            else:
                self.final_layer = None

            self.heatmap_size = in_featuremap_size

        if isinstance(in_channels, list):
            raise ValueError(
                f'{self.__class__.__name__} does not support selecting '
                'multiple input features.')

        W, H = self.heatmap_size
        self.linspace_x = torch.arange(0.0, 1.0 * W, 1).reshape(1, 1, 1, W) / W
        self.linspace_y = torch.arange(0.0, 1.0 * H, 1).reshape(1, 1, H, 1) / H

        self.linspace_x = nn.Parameter(self.linspace_x, requires_grad=False)
        self.linspace_y = nn.Parameter(self.linspace_y, requires_grad=False)

        self._register_load_state_dict_pre_hook(self._load_state_dict_pre_hook)

    def _linear_expectation(self, heatmaps: Tensor,
                            linspace: Tensor) -> Tensor:
        """Calculate linear expectation."""

        B, N, _, _ = heatmaps.shape
        heatmaps = heatmaps.mul(linspace).reshape(B, N, -1)
        expectation = torch.sum(heatmaps, dim=2, keepdim=True)

        return expectation

    def _flat_softmax(self, featmaps: Tensor) -> Tensor:
        """Use Softmax to normalize the featmaps in depthwise."""

        _, N, H, W = featmaps.shape

        featmaps = featmaps.reshape(-1, N, H * W)
        heatmaps = F.softmax(featmaps, dim=2)

        return heatmaps.reshape(-1, N, H, W)

    def forward(self, feats: Tuple[Tensor]) -> Union[Tensor, Tuple[Tensor]]:
        """Forward the network. The input is multi scale feature maps and the
        output is the coordinates.

        Args:
            feats (Tuple[Tensor]): Multi scale feature maps.

        Returns:
            Tensor: output coordinates(and sigmas[optional]).
        """
        if self.simplebaseline_head is None:
            feats = feats[-1]
            if self.final_layer is not None:
                feats = self.final_layer(feats)
        else:
            feats = self.simplebaseline_head(feats)

        heatmaps = self._flat_softmax(feats * self.beta)

        pred_x = self._linear_expectation(heatmaps, self.linspace_x)
        pred_y = self._linear_expectation(heatmaps, self.linspace_y)

        if self.debias:
            B, N, H, W = feats.shape
            C = feats.reshape(B, N, H * W).exp().sum(dim=2).reshape(B, N, 1)
            pred_x = C / (C - 1) * (pred_x - 1 / (2 * C))
            pred_y = C / (C - 1) * (pred_y - 1 / (2 * C))

        coords = torch.cat([pred_x, pred_y], dim=-1)
        return coords, heatmaps

    def predict(self,
                feats: Tuple[Tensor],
                batch_data_samples: OptSampleList,
                test_cfg: ConfigType = {}) -> Predictions:
        """Predict results from features.

        Args:
            feats (Tuple[Tensor] | List[Tuple[Tensor]]): The multi-stage
                features (or multiple multi-stage features in TTA)
            batch_data_samples (List[:obj:`PoseDataSample`]): The batch
                data samples
            test_cfg (dict): The runtime config for testing process. Defaults
                to {}

        Returns:
            Union[InstanceList | Tuple[InstanceList | PixelDataList]]: If
            ``test_cfg['output_heatmap']==True``, return both pose and heatmap
            prediction; otherwise only return the pose prediction.

            The pose prediction is a list of ``InstanceData``, each contains
            the following fields:

                - keypoints (np.ndarray): predicted keypoint coordinates in
                    shape (num_instances, K, D) where K is the keypoint number
                    and D is the keypoint dimension
                - keypoint_scores (np.ndarray): predicted keypoint scores in
                    shape (num_instances, K)

            The heatmap prediction is a list of ``PixelData``, each contains
            the following fields:

                - heatmaps (Tensor): The predicted heatmaps in shape (K, h, w)
        """

        if test_cfg.get('flip_test', False):
            # TTA: flip test -> feats = [orig, flipped]
            assert isinstance(feats, list) and len(feats) == 2
            flip_indices = batch_data_samples[0].metainfo['flip_indices']
            input_size = batch_data_samples[0].metainfo['input_size']
            _feats, _feats_flip = feats

            _batch_coords, _batch_heatmaps = self.forward(_feats)

            _batch_coords_flip, _batch_heatmaps_flip = self.forward(
                _feats_flip)
            _batch_coords_flip = flip_coordinates(
                _batch_coords_flip,
                flip_indices=flip_indices,
                shift_coords=test_cfg.get('shift_coords', True),
                input_size=input_size)
            _batch_heatmaps_flip = flip_heatmaps(
                _batch_heatmaps_flip,
                flip_mode='heatmap',
                flip_indices=flip_indices,
                shift_heatmap=test_cfg.get('shift_heatmap', False))

            batch_coords = (_batch_coords + _batch_coords_flip) * 0.5
            batch_heatmaps = (_batch_heatmaps + _batch_heatmaps_flip) * 0.5
        else:
            batch_coords, batch_heatmaps = self.forward(feats)  # (B, K, D)

        batch_coords.unsqueeze_(dim=1)  # (B, N, K, D)
        preds = self.decode(batch_coords)

        if test_cfg.get('output_heatmaps', False):
            pred_fields = [
                PixelData(heatmaps=hm) for hm in batch_heatmaps.detach()
            ]
            return preds, pred_fields
        else:
            return preds

    def loss(self,
             inputs: Tuple[Tensor],
             batch_data_samples: OptSampleList,
             train_cfg: ConfigType = {}) -> dict:
        """Calculate losses from a batch of inputs and data samples."""

        pred_coords, _ = self.forward(inputs)
        keypoint_labels = torch.cat(
            [d.gt_instance_labels.keypoint_labels for d in batch_data_samples])
        keypoint_weights = torch.cat([
            d.gt_instance_labels.keypoint_weights for d in batch_data_samples
        ])

        # calculate losses
        losses = dict()

        # TODO: multi-loss calculation
        loss = self.loss_module(pred_coords, keypoint_labels, keypoint_weights)

        losses.update(loss_kpt=loss)

        # calculate accuracy
        _, avg_acc, _ = keypoint_pck_accuracy(
            pred=to_numpy(pred_coords),
            gt=to_numpy(keypoint_labels),
            mask=to_numpy(keypoint_weights) > 0,
            thr=0.05,
            norm_factor=np.ones((pred_coords.size(0), 2), dtype=np.float32))

        acc_pose = torch.tensor(avg_acc, device=keypoint_labels.device)
        losses.update(acc_pose=acc_pose)

        return losses

    @property
    def default_init_cfg(self):
        init_cfg = [dict(type='Normal', layer=['Linear'], std=0.01, bias=0)]
        return init_cfg

    def _load_state_dict_pre_hook(self, state_dict, prefix, local_meta, *args,
                                  **kwargs):
        """A hook function to load weights of deconv layers from
        :class:`HeatmapHead` into `simplebaseline_head`.

        The hook will be automatically registered during initialization.
        """

        # convert old-version state dict
        keys = list(state_dict.keys())
        for _k in keys:
            if not _k.startswith(prefix):
                continue
            v = state_dict.pop(_k)
            k = _k.lstrip(prefix)

            k_new = _k
            k_parts = k.split('.')
            if self.simplebaseline_head is not None:
                if k_parts[0] == 'conv_layers':
                    k_new = (
                        prefix + 'simplebaseline_head.deconv_layers.' +
                        '.'.join(k_parts[1:]))
                elif k_parts[0] == 'final_layer':
                    k_new = prefix + 'simplebaseline_head.' + k

            state_dict[k_new] = v