Spaces:
Runtime error
Runtime error
File size: 13,301 Bytes
cc0dd3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Optional, Sequence, Tuple, Union
import numpy as np
import torch
import torch.nn.functional as F
from mmcv.cnn import build_conv_layer
from mmengine.structures import PixelData
from torch import Tensor, nn
from mmpose.evaluation.functional import keypoint_pck_accuracy
from mmpose.models.utils.tta import flip_coordinates, flip_heatmaps
from mmpose.registry import KEYPOINT_CODECS, MODELS
from mmpose.utils.tensor_utils import to_numpy
from mmpose.utils.typing import (ConfigType, OptConfigType, OptSampleList,
Predictions)
from .. import HeatmapHead
from ..base_head import BaseHead
OptIntSeq = Optional[Sequence[int]]
@MODELS.register_module()
class IntegralRegressionHead(BaseHead):
"""Top-down integral regression head introduced in `IPR`_ by Xiao et
al(2018). The head contains a differentiable spatial to numerical transform
(DSNT) layer that do soft-argmax operation on the predicted heatmaps to
regress the coordinates.
This head is used for algorithms that only supervise the coordinates.
Args:
in_channels (int | sequence[int]): Number of input channels
in_featuremap_size (int | sequence[int]): Size of input feature map
num_joints (int): Number of joints
debias (bool): Whether to remove the bias of Integral Pose Regression.
see `Removing the Bias of Integral Pose Regression`_ by Gu et al
(2021). Defaults to ``False``.
beta (float): A smoothing parameter in softmax. Defaults to ``1.0``.
deconv_out_channels (sequence[int]): The output channel number of each
deconv layer. Defaults to ``(256, 256, 256)``
deconv_kernel_sizes (sequence[int | tuple], optional): The kernel size
of each deconv layer. Each element should be either an integer for
both height and width dimensions, or a tuple of two integers for
the height and the width dimension respectively.Defaults to
``(4, 4, 4)``
conv_out_channels (sequence[int], optional): The output channel number
of each intermediate conv layer. ``None`` means no intermediate
conv layer between deconv layers and the final conv layer.
Defaults to ``None``
conv_kernel_sizes (sequence[int | tuple], optional): The kernel size
of each intermediate conv layer. Defaults to ``None``
final_layer (dict): Arguments of the final Conv2d layer.
Defaults to ``dict(kernel_size=1)``
loss (Config): Config for keypoint loss. Defaults to use
:class:`SmoothL1Loss`
decoder (Config, optional): The decoder config that controls decoding
keypoint coordinates from the network output. Defaults to ``None``
init_cfg (Config, optional): Config to control the initialization. See
:attr:`default_init_cfg` for default settings
.. _`IPR`: https://arxiv.org/abs/1711.08229
.. _`Debias`:
"""
_version = 2
def __init__(self,
in_channels: Union[int, Sequence[int]],
in_featuremap_size: Tuple[int, int],
num_joints: int,
debias: bool = False,
beta: float = 1.0,
deconv_out_channels: OptIntSeq = (256, 256, 256),
deconv_kernel_sizes: OptIntSeq = (4, 4, 4),
conv_out_channels: OptIntSeq = None,
conv_kernel_sizes: OptIntSeq = None,
final_layer: dict = dict(kernel_size=1),
loss: ConfigType = dict(
type='SmoothL1Loss', use_target_weight=True),
decoder: OptConfigType = None,
init_cfg: OptConfigType = None):
if init_cfg is None:
init_cfg = self.default_init_cfg
super().__init__(init_cfg)
self.in_channels = in_channels
self.num_joints = num_joints
self.debias = debias
self.beta = beta
self.loss_module = MODELS.build(loss)
if decoder is not None:
self.decoder = KEYPOINT_CODECS.build(decoder)
else:
self.decoder = None
num_deconv = len(deconv_out_channels) if deconv_out_channels else 0
if num_deconv != 0:
self.heatmap_size = tuple(
[s * (2**num_deconv) for s in in_featuremap_size])
# deconv layers + 1x1 conv
self.simplebaseline_head = HeatmapHead(
in_channels=in_channels,
out_channels=num_joints,
deconv_out_channels=deconv_out_channels,
deconv_kernel_sizes=deconv_kernel_sizes,
conv_out_channels=conv_out_channels,
conv_kernel_sizes=conv_kernel_sizes,
final_layer=final_layer)
if final_layer is not None:
in_channels = num_joints
else:
in_channels = deconv_out_channels[-1]
else:
self.simplebaseline_head = None
if final_layer is not None:
cfg = dict(
type='Conv2d',
in_channels=in_channels,
out_channels=num_joints,
kernel_size=1)
cfg.update(final_layer)
self.final_layer = build_conv_layer(cfg)
else:
self.final_layer = None
self.heatmap_size = in_featuremap_size
if isinstance(in_channels, list):
raise ValueError(
f'{self.__class__.__name__} does not support selecting '
'multiple input features.')
W, H = self.heatmap_size
self.linspace_x = torch.arange(0.0, 1.0 * W, 1).reshape(1, 1, 1, W) / W
self.linspace_y = torch.arange(0.0, 1.0 * H, 1).reshape(1, 1, H, 1) / H
self.linspace_x = nn.Parameter(self.linspace_x, requires_grad=False)
self.linspace_y = nn.Parameter(self.linspace_y, requires_grad=False)
self._register_load_state_dict_pre_hook(self._load_state_dict_pre_hook)
def _linear_expectation(self, heatmaps: Tensor,
linspace: Tensor) -> Tensor:
"""Calculate linear expectation."""
B, N, _, _ = heatmaps.shape
heatmaps = heatmaps.mul(linspace).reshape(B, N, -1)
expectation = torch.sum(heatmaps, dim=2, keepdim=True)
return expectation
def _flat_softmax(self, featmaps: Tensor) -> Tensor:
"""Use Softmax to normalize the featmaps in depthwise."""
_, N, H, W = featmaps.shape
featmaps = featmaps.reshape(-1, N, H * W)
heatmaps = F.softmax(featmaps, dim=2)
return heatmaps.reshape(-1, N, H, W)
def forward(self, feats: Tuple[Tensor]) -> Union[Tensor, Tuple[Tensor]]:
"""Forward the network. The input is multi scale feature maps and the
output is the coordinates.
Args:
feats (Tuple[Tensor]): Multi scale feature maps.
Returns:
Tensor: output coordinates(and sigmas[optional]).
"""
if self.simplebaseline_head is None:
feats = feats[-1]
if self.final_layer is not None:
feats = self.final_layer(feats)
else:
feats = self.simplebaseline_head(feats)
heatmaps = self._flat_softmax(feats * self.beta)
pred_x = self._linear_expectation(heatmaps, self.linspace_x)
pred_y = self._linear_expectation(heatmaps, self.linspace_y)
if self.debias:
B, N, H, W = feats.shape
C = feats.reshape(B, N, H * W).exp().sum(dim=2).reshape(B, N, 1)
pred_x = C / (C - 1) * (pred_x - 1 / (2 * C))
pred_y = C / (C - 1) * (pred_y - 1 / (2 * C))
coords = torch.cat([pred_x, pred_y], dim=-1)
return coords, heatmaps
def predict(self,
feats: Tuple[Tensor],
batch_data_samples: OptSampleList,
test_cfg: ConfigType = {}) -> Predictions:
"""Predict results from features.
Args:
feats (Tuple[Tensor] | List[Tuple[Tensor]]): The multi-stage
features (or multiple multi-stage features in TTA)
batch_data_samples (List[:obj:`PoseDataSample`]): The batch
data samples
test_cfg (dict): The runtime config for testing process. Defaults
to {}
Returns:
Union[InstanceList | Tuple[InstanceList | PixelDataList]]: If
``test_cfg['output_heatmap']==True``, return both pose and heatmap
prediction; otherwise only return the pose prediction.
The pose prediction is a list of ``InstanceData``, each contains
the following fields:
- keypoints (np.ndarray): predicted keypoint coordinates in
shape (num_instances, K, D) where K is the keypoint number
and D is the keypoint dimension
- keypoint_scores (np.ndarray): predicted keypoint scores in
shape (num_instances, K)
The heatmap prediction is a list of ``PixelData``, each contains
the following fields:
- heatmaps (Tensor): The predicted heatmaps in shape (K, h, w)
"""
if test_cfg.get('flip_test', False):
# TTA: flip test -> feats = [orig, flipped]
assert isinstance(feats, list) and len(feats) == 2
flip_indices = batch_data_samples[0].metainfo['flip_indices']
input_size = batch_data_samples[0].metainfo['input_size']
_feats, _feats_flip = feats
_batch_coords, _batch_heatmaps = self.forward(_feats)
_batch_coords_flip, _batch_heatmaps_flip = self.forward(
_feats_flip)
_batch_coords_flip = flip_coordinates(
_batch_coords_flip,
flip_indices=flip_indices,
shift_coords=test_cfg.get('shift_coords', True),
input_size=input_size)
_batch_heatmaps_flip = flip_heatmaps(
_batch_heatmaps_flip,
flip_mode='heatmap',
flip_indices=flip_indices,
shift_heatmap=test_cfg.get('shift_heatmap', False))
batch_coords = (_batch_coords + _batch_coords_flip) * 0.5
batch_heatmaps = (_batch_heatmaps + _batch_heatmaps_flip) * 0.5
else:
batch_coords, batch_heatmaps = self.forward(feats) # (B, K, D)
batch_coords.unsqueeze_(dim=1) # (B, N, K, D)
preds = self.decode(batch_coords)
if test_cfg.get('output_heatmaps', False):
pred_fields = [
PixelData(heatmaps=hm) for hm in batch_heatmaps.detach()
]
return preds, pred_fields
else:
return preds
def loss(self,
inputs: Tuple[Tensor],
batch_data_samples: OptSampleList,
train_cfg: ConfigType = {}) -> dict:
"""Calculate losses from a batch of inputs and data samples."""
pred_coords, _ = self.forward(inputs)
keypoint_labels = torch.cat(
[d.gt_instance_labels.keypoint_labels for d in batch_data_samples])
keypoint_weights = torch.cat([
d.gt_instance_labels.keypoint_weights for d in batch_data_samples
])
# calculate losses
losses = dict()
# TODO: multi-loss calculation
loss = self.loss_module(pred_coords, keypoint_labels, keypoint_weights)
losses.update(loss_kpt=loss)
# calculate accuracy
_, avg_acc, _ = keypoint_pck_accuracy(
pred=to_numpy(pred_coords),
gt=to_numpy(keypoint_labels),
mask=to_numpy(keypoint_weights) > 0,
thr=0.05,
norm_factor=np.ones((pred_coords.size(0), 2), dtype=np.float32))
acc_pose = torch.tensor(avg_acc, device=keypoint_labels.device)
losses.update(acc_pose=acc_pose)
return losses
@property
def default_init_cfg(self):
init_cfg = [dict(type='Normal', layer=['Linear'], std=0.01, bias=0)]
return init_cfg
def _load_state_dict_pre_hook(self, state_dict, prefix, local_meta, *args,
**kwargs):
"""A hook function to load weights of deconv layers from
:class:`HeatmapHead` into `simplebaseline_head`.
The hook will be automatically registered during initialization.
"""
# convert old-version state dict
keys = list(state_dict.keys())
for _k in keys:
if not _k.startswith(prefix):
continue
v = state_dict.pop(_k)
k = _k.lstrip(prefix)
k_new = _k
k_parts = k.split('.')
if self.simplebaseline_head is not None:
if k_parts[0] == 'conv_layers':
k_new = (
prefix + 'simplebaseline_head.deconv_layers.' +
'.'.join(k_parts[1:]))
elif k_parts[0] == 'final_layer':
k_new = prefix + 'simplebaseline_head.' + k
state_dict[k_new] = v
|