File size: 16,723 Bytes
cc0dd3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Optional

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor

from mmpose.registry import MODELS


@MODELS.register_module()
class KeypointMSELoss(nn.Module):
    """MSE loss for heatmaps.

    Args:
        use_target_weight (bool): Option to use weighted MSE loss.
            Different joint types may have different target weights.
            Defaults to ``False``
        skip_empty_channel (bool): If ``True``, heatmap channels with no
            non-zero value (which means no visible ground-truth keypoint
            in the image) will not be used to calculate the loss. Defaults to
            ``False``
        loss_weight (float): Weight of the loss. Defaults to 1.0
    """

    def __init__(self,
                 use_target_weight: bool = False,
                 skip_empty_channel: bool = False,
                 loss_weight: float = 1.):
        super().__init__()
        self.use_target_weight = use_target_weight
        self.skip_empty_channel = skip_empty_channel
        self.loss_weight = loss_weight

    def forward(self,
                output: Tensor,
                target: Tensor,
                target_weights: Optional[Tensor] = None,
                mask: Optional[Tensor] = None) -> Tensor:
        """Forward function of loss.

        Note:
            - batch_size: B
            - num_keypoints: K
            - heatmaps height: H
            - heatmaps weight: W

        Args:
            output (Tensor): The output heatmaps with shape [B, K, H, W]
            target (Tensor): The target heatmaps with shape [B, K, H, W]
            target_weights (Tensor, optional): The target weights of differet
                keypoints, with shape [B, K] (keypoint-wise) or
                [B, K, H, W] (pixel-wise).
            mask (Tensor, optional): The masks of valid heatmap pixels in
                shape [B, K, H, W] or [B, 1, H, W]. If ``None``, no mask will
                be applied. Defaults to ``None``

        Returns:
            Tensor: The calculated loss.
        """

        _mask = self._get_mask(target, target_weights, mask)
        if _mask is None:
            loss = F.mse_loss(output, target)
        else:
            _loss = F.mse_loss(output, target, reduction='none')
            loss = (_loss * _mask).mean()

        return loss * self.loss_weight

    def _get_mask(self, target: Tensor, target_weights: Optional[Tensor],
                  mask: Optional[Tensor]) -> Optional[Tensor]:
        """Generate the heatmap mask w.r.t. the given mask, target weight and
        `skip_empty_channel` setting.

        Returns:
            Tensor: The mask in shape (B, K, *) or ``None`` if no mask is
            needed.
        """
        # Given spatial mask
        if mask is not None:
            # check mask has matching type with target
            assert (mask.ndim == target.ndim and all(
                d_m == d_t or d_m == 1
                for d_m, d_t in zip(mask.shape, target.shape))), (
                    f'mask and target have mismatched shapes {mask.shape} v.s.'
                    f'{target.shape}')

        # Mask by target weights (keypoint-wise mask)
        if target_weights is not None:
            # check target weight has matching shape with target
            assert (target_weights.ndim in (2, 4) and target_weights.shape
                    == target.shape[:target_weights.ndim]), (
                        'target_weights and target have mismatched shapes '
                        f'{target_weights.shape} v.s. {target.shape}')

            ndim_pad = target.ndim - target_weights.ndim
            _mask = target_weights.view(target_weights.shape +
                                        (1, ) * ndim_pad)

            if mask is None:
                mask = _mask
            else:
                mask = mask * _mask

        # Mask by ``skip_empty_channel``
        if self.skip_empty_channel:
            _mask = (target != 0).flatten(2).any()
            ndim_pad = target.ndim - _mask.ndim
            _mask = _mask.view(_mask.shape + (1, ) * ndim_pad)

            if mask is None:
                mask = _mask
            else:
                mask = mask * _mask

        return mask


@MODELS.register_module()
class CombinedTargetMSELoss(nn.Module):
    """MSE loss for combined target.

    CombinedTarget: The combination of classification target
    (response map) and regression target (offset map).
    Paper ref: Huang et al. The Devil is in the Details: Delving into
    Unbiased Data Processing for Human Pose Estimation (CVPR 2020).

    Args:
        use_target_weight (bool): Option to use weighted MSE loss.
            Different joint types may have different target weights.
            Defaults to ``False``
        loss_weight (float): Weight of the loss. Defaults to 1.0
    """

    def __init__(self,
                 use_target_weight: bool = False,
                 loss_weight: float = 1.):
        super().__init__()
        self.criterion = nn.MSELoss(reduction='mean')
        self.use_target_weight = use_target_weight
        self.loss_weight = loss_weight

    def forward(self, output: Tensor, target: Tensor,
                target_weights: Tensor) -> Tensor:
        """Forward function of loss.

        Note:
            - batch_size: B
            - num_channels: C
            - heatmaps height: H
            - heatmaps weight: W
            - num_keypoints: K
            Here, C = 3 * K

        Args:
            output (Tensor): The output feature maps with shape [B, C, H, W].
            target (Tensor): The target feature maps with shape [B, C, H, W].
            target_weights (Tensor): The target weights of differet keypoints,
                with shape [B, K].

        Returns:
            Tensor: The calculated loss.
        """
        batch_size = output.size(0)
        num_channels = output.size(1)
        heatmaps_pred = output.reshape(
            (batch_size, num_channels, -1)).split(1, 1)
        heatmaps_gt = target.reshape(
            (batch_size, num_channels, -1)).split(1, 1)
        loss = 0.
        num_joints = num_channels // 3
        for idx in range(num_joints):
            heatmap_pred = heatmaps_pred[idx * 3].squeeze()
            heatmap_gt = heatmaps_gt[idx * 3].squeeze()
            offset_x_pred = heatmaps_pred[idx * 3 + 1].squeeze()
            offset_x_gt = heatmaps_gt[idx * 3 + 1].squeeze()
            offset_y_pred = heatmaps_pred[idx * 3 + 2].squeeze()
            offset_y_gt = heatmaps_gt[idx * 3 + 2].squeeze()
            if self.use_target_weight:
                target_weight = target_weights[:, idx, None]
                heatmap_pred = heatmap_pred * target_weight
                heatmap_gt = heatmap_gt * target_weight
            # classification loss
            loss += 0.5 * self.criterion(heatmap_pred, heatmap_gt)
            # regression loss
            loss += 0.5 * self.criterion(heatmap_gt * offset_x_pred,
                                         heatmap_gt * offset_x_gt)
            loss += 0.5 * self.criterion(heatmap_gt * offset_y_pred,
                                         heatmap_gt * offset_y_gt)
        return loss / num_joints * self.loss_weight


@MODELS.register_module()
class KeypointOHKMMSELoss(nn.Module):
    """MSE loss with online hard keypoint mining.

    Args:
        use_target_weight (bool): Option to use weighted MSE loss.
            Different joint types may have different target weights.
            Defaults to ``False``
        topk (int): Only top k joint losses are kept. Defaults to 8
        loss_weight (float): Weight of the loss. Defaults to 1.0
    """

    def __init__(self,
                 use_target_weight: bool = False,
                 topk: int = 8,
                 loss_weight: float = 1.):
        super().__init__()
        assert topk > 0
        self.criterion = nn.MSELoss(reduction='none')
        self.use_target_weight = use_target_weight
        self.topk = topk
        self.loss_weight = loss_weight

    def _ohkm(self, losses: Tensor) -> Tensor:
        """Online hard keypoint mining.

        Note:
            - batch_size: B
            - num_keypoints: K

        Args:
            loss (Tensor): The losses with shape [B, K]

        Returns:
            Tensor: The calculated loss.
        """
        ohkm_loss = 0.
        B = losses.shape[0]
        for i in range(B):
            sub_loss = losses[i]
            _, topk_idx = torch.topk(
                sub_loss, k=self.topk, dim=0, sorted=False)
            tmp_loss = torch.gather(sub_loss, 0, topk_idx)
            ohkm_loss += torch.sum(tmp_loss) / self.topk
        ohkm_loss /= B
        return ohkm_loss

    def forward(self, output: Tensor, target: Tensor,
                target_weights: Tensor) -> Tensor:
        """Forward function of loss.

        Note:
            - batch_size: B
            - num_keypoints: K
            - heatmaps height: H
            - heatmaps weight: W

        Args:
            output (Tensor): The output heatmaps with shape [B, K, H, W].
            target (Tensor): The target heatmaps with shape [B, K, H, W].
            target_weights (Tensor): The target weights of differet keypoints,
                with shape [B, K].

        Returns:
            Tensor: The calculated loss.
        """
        num_keypoints = output.size(1)
        if num_keypoints < self.topk:
            raise ValueError(f'topk ({self.topk}) should not be '
                             f'larger than num_keypoints ({num_keypoints}).')

        losses = []
        for idx in range(num_keypoints):
            if self.use_target_weight:
                target_weight = target_weights[:, idx, None, None]
                losses.append(
                    self.criterion(output[:, idx] * target_weight,
                                   target[:, idx] * target_weight))
            else:
                losses.append(self.criterion(output[:, idx], target[:, idx]))

        losses = [loss.mean(dim=(1, 2)).unsqueeze(dim=1) for loss in losses]
        losses = torch.cat(losses, dim=1)

        return self._ohkm(losses) * self.loss_weight


@MODELS.register_module()
class AdaptiveWingLoss(nn.Module):
    """Adaptive wing loss. paper ref: 'Adaptive Wing Loss for Robust Face
    Alignment via Heatmap Regression' Wang et al. ICCV'2019.

    Args:
        alpha (float), omega (float), epsilon (float), theta (float)
            are hyper-parameters.
        use_target_weight (bool): Option to use weighted MSE loss.
            Different joint types may have different target weights.
        loss_weight (float): Weight of the loss. Default: 1.0.
    """

    def __init__(self,
                 alpha=2.1,
                 omega=14,
                 epsilon=1,
                 theta=0.5,
                 use_target_weight=False,
                 loss_weight=1.):
        super().__init__()
        self.alpha = float(alpha)
        self.omega = float(omega)
        self.epsilon = float(epsilon)
        self.theta = float(theta)
        self.use_target_weight = use_target_weight
        self.loss_weight = loss_weight

    def criterion(self, pred, target):
        """Criterion of wingloss.

        Note:
            batch_size: N
            num_keypoints: K

        Args:
            pred (torch.Tensor[NxKxHxW]): Predicted heatmaps.
            target (torch.Tensor[NxKxHxW]): Target heatmaps.
        """
        H, W = pred.shape[2:4]
        delta = (target - pred).abs()

        A = self.omega * (
            1 / (1 + torch.pow(self.theta / self.epsilon, self.alpha - target))
        ) * (self.alpha - target) * (torch.pow(
            self.theta / self.epsilon,
            self.alpha - target - 1)) * (1 / self.epsilon)
        C = self.theta * A - self.omega * torch.log(
            1 + torch.pow(self.theta / self.epsilon, self.alpha - target))

        losses = torch.where(
            delta < self.theta,
            self.omega *
            torch.log(1 +
                      torch.pow(delta / self.epsilon, self.alpha - target)),
            A * delta - C)

        return torch.mean(losses)

    def forward(self,
                output: Tensor,
                target: Tensor,
                target_weights: Optional[Tensor] = None):
        """Forward function.

        Note:
            batch_size: N
            num_keypoints: K

        Args:
            output (torch.Tensor[N, K, H, W]): Output heatmaps.
            target (torch.Tensor[N, K, H, W]): Target heatmaps.
            target_weight (torch.Tensor[N, K]):
                Weights across different joint types.
        """
        if self.use_target_weight:
            assert (target_weights.ndim in (2, 4) and target_weights.shape
                    == target.shape[:target_weights.ndim]), (
                        'target_weights and target have mismatched shapes '
                        f'{target_weights.shape} v.s. {target.shape}')

            ndim_pad = target.ndim - target_weights.ndim
            target_weights = target_weights.view(target_weights.shape +
                                                 (1, ) * ndim_pad)
            loss = self.criterion(output * target_weights,
                                  target * target_weights)
        else:
            loss = self.criterion(output, target)

        return loss * self.loss_weight


@MODELS.register_module()
class FocalHeatmapLoss(KeypointMSELoss):
    """A class for calculating the modified focal loss for heatmap prediction.

    This loss function is exactly the same as the one used in CornerNet. It
    runs faster and costs a little bit more memory.

    `CornerNet: Detecting Objects as Paired Keypoints
    arXiv: <https://arxiv.org/abs/1808.01244>`_.

    Arguments:
        alpha (int): The alpha parameter in the focal loss equation.
        beta (int): The beta parameter in the focal loss equation.
        use_target_weight (bool): Option to use weighted MSE loss.
            Different joint types may have different target weights.
            Defaults to ``False``
        skip_empty_channel (bool): If ``True``, heatmap channels with no
            non-zero value (which means no visible ground-truth keypoint
            in the image) will not be used to calculate the loss. Defaults to
            ``False``
        loss_weight (float): Weight of the loss. Defaults to 1.0
    """

    def __init__(self,
                 alpha: int = 2,
                 beta: int = 4,
                 use_target_weight: bool = False,
                 skip_empty_channel: bool = False,
                 loss_weight: float = 1.0):
        super(FocalHeatmapLoss, self).__init__(use_target_weight,
                                               skip_empty_channel, loss_weight)
        self.alpha = alpha
        self.beta = beta

    def forward(self,
                output: Tensor,
                target: Tensor,
                target_weights: Optional[Tensor] = None,
                mask: Optional[Tensor] = None) -> Tensor:
        """Calculate the modified focal loss for heatmap prediction.

        Note:
            - batch_size: B
            - num_keypoints: K
            - heatmaps height: H
            - heatmaps weight: W

        Args:
            output (Tensor): The output heatmaps with shape [B, K, H, W]
            target (Tensor): The target heatmaps with shape [B, K, H, W]
            target_weights (Tensor, optional): The target weights of differet
                keypoints, with shape [B, K] (keypoint-wise) or
                [B, K, H, W] (pixel-wise).
            mask (Tensor, optional): The masks of valid heatmap pixels in
                shape [B, K, H, W] or [B, 1, H, W]. If ``None``, no mask will
                be applied. Defaults to ``None``

        Returns:
            Tensor: The calculated loss.
        """
        _mask = self._get_mask(target, target_weights, mask)

        pos_inds = target.eq(1).float()
        neg_inds = target.lt(1).float()

        if _mask is not None:
            pos_inds = pos_inds * _mask
            neg_inds = neg_inds * _mask

        neg_weights = torch.pow(1 - target, self.beta)

        pos_loss = torch.log(output) * torch.pow(1 - output,
                                                 self.alpha) * pos_inds
        neg_loss = torch.log(1 - output) * torch.pow(
            output, self.alpha) * neg_weights * neg_inds

        num_pos = pos_inds.float().sum()
        if num_pos == 0:
            loss = -neg_loss.sum()
        else:
            loss = -(pos_loss.sum() + neg_loss.sum()) / num_pos
        return loss * self.loss_weight