File size: 7,952 Bytes
cc0dd3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# Copyright (c) OpenMMLab. All rights reserved.
from abc import ABCMeta, abstractmethod
from typing import Tuple, Union

import torch
from mmengine.model import BaseModel
from torch import Tensor

from mmpose.datasets.datasets.utils import parse_pose_metainfo
from mmpose.models.utils import check_and_update_config
from mmpose.registry import MODELS
from mmpose.utils.typing import (ConfigType, ForwardResults, OptConfigType,
                                 Optional, OptMultiConfig, OptSampleList,
                                 SampleList)


class BasePoseEstimator(BaseModel, metaclass=ABCMeta):
    """Base class for pose estimators.

    Args:
        data_preprocessor (dict | ConfigDict, optional): The pre-processing
            config of :class:`BaseDataPreprocessor`. Defaults to ``None``
        init_cfg (dict | ConfigDict): The model initialization config.
            Defaults to ``None``
        metainfo (dict): Meta information for dataset, such as keypoints
            definition and properties. If set, the metainfo of the input data
            batch will be overridden. For more details, please refer to
            https://mmpose.readthedocs.io/en/latest/user_guides/
            prepare_datasets.html#create-a-custom-dataset-info-
            config-file-for-the-dataset. Defaults to ``None``
    """
    _version = 2

    def __init__(self,
                 backbone: ConfigType,
                 neck: OptConfigType = None,
                 head: OptConfigType = None,
                 train_cfg: OptConfigType = None,
                 test_cfg: OptConfigType = None,
                 data_preprocessor: OptConfigType = None,
                 init_cfg: OptMultiConfig = None,
                 metainfo: Optional[dict] = None):
        super().__init__(
            data_preprocessor=data_preprocessor, init_cfg=init_cfg)
        self.metainfo = self._load_metainfo(metainfo)

        self.backbone = MODELS.build(backbone)

        # the PR #2108 and #2126 modified the interface of neck and head.
        # The following function automatically detects outdated
        # configurations and updates them accordingly, while also providing
        # clear and concise information on the changes made.
        neck, head = check_and_update_config(neck, head)

        if neck is not None:
            self.neck = MODELS.build(neck)

        if head is not None:
            self.head = MODELS.build(head)

        self.train_cfg = train_cfg if train_cfg else {}
        self.test_cfg = test_cfg if test_cfg else {}

        # Register the hook to automatically convert old version state dicts
        self._register_load_state_dict_pre_hook(self._load_state_dict_pre_hook)

    @property
    def with_neck(self) -> bool:
        """bool: whether the pose estimator has a neck."""
        return hasattr(self, 'neck') and self.neck is not None

    @property
    def with_head(self) -> bool:
        """bool: whether the pose estimator has a head."""
        return hasattr(self, 'head') and self.head is not None

    @staticmethod
    def _load_metainfo(metainfo: dict = None) -> dict:
        """Collect meta information from the dictionary of meta.

        Args:
            metainfo (dict): Raw data of pose meta information.

        Returns:
            dict: Parsed meta information.
        """

        if metainfo is None:
            return None

        if not isinstance(metainfo, dict):
            raise TypeError(
                f'metainfo should be a dict, but got {type(metainfo)}')

        metainfo = parse_pose_metainfo(metainfo)
        return metainfo

    def forward(self,
                inputs: torch.Tensor,
                data_samples: OptSampleList,
                mode: str = 'tensor') -> ForwardResults:
        """The unified entry for a forward process in both training and test.

        The method should accept three modes: 'tensor', 'predict' and 'loss':

        - 'tensor': Forward the whole network and return tensor or tuple of
        tensor without any post-processing, same as a common nn.Module.
        - 'predict': Forward and return the predictions, which are fully
        processed to a list of :obj:`PoseDataSample`.
        - 'loss': Forward and return a dict of losses according to the given
        inputs and data samples.

        Note that this method doesn't handle neither back propagation nor
        optimizer updating, which are done in the :meth:`train_step`.

        Args:
            inputs (torch.Tensor): The input tensor with shape
                (N, C, ...) in general
            data_samples (list[:obj:`PoseDataSample`], optional): The
                annotation of every sample. Defaults to ``None``
            mode (str): Set the forward mode and return value type. Defaults
                to ``'tensor'``

        Returns:
            The return type depends on ``mode``.

            - If ``mode='tensor'``, return a tensor or a tuple of tensors
            - If ``mode='predict'``, return a list of :obj:``PoseDataSample``
                that contains the pose predictions
            - If ``mode='loss'``, return a dict of tensor(s) which is the loss
                function value
        """
        if mode == 'loss':
            return self.loss(inputs, data_samples)
        elif mode == 'predict':
            # use customed metainfo to override the default metainfo
            if self.metainfo is not None:
                for data_sample in data_samples:
                    data_sample.set_metainfo(self.metainfo)
            return self.predict(inputs, data_samples)
        elif mode == 'tensor':
            return self._forward(inputs)
        else:
            raise RuntimeError(f'Invalid mode "{mode}". '
                               'Only supports loss, predict and tensor mode.')

    @abstractmethod
    def loss(self, inputs: Tensor, data_samples: SampleList) -> dict:
        """Calculate losses from a batch of inputs and data samples."""

    @abstractmethod
    def predict(self, inputs: Tensor, data_samples: SampleList) -> SampleList:
        """Predict results from a batch of inputs and data samples with post-
        processing."""

    def _forward(self,
                 inputs: Tensor,
                 data_samples: OptSampleList = None
                 ) -> Union[Tensor, Tuple[Tensor]]:
        """Network forward process. Usually includes backbone, neck and head
        forward without any post-processing.

        Args:
            inputs (Tensor): Inputs with shape (N, C, H, W).

        Returns:
            Union[Tensor | Tuple[Tensor]]: forward output of the network.
        """

        x = self.extract_feat(inputs)
        if self.with_head:
            x = self.head.forward(x)

        return x

    def extract_feat(self, inputs: Tensor) -> Tuple[Tensor]:
        """Extract features.

        Args:
            inputs (Tensor): Image tensor with shape (N, C, H ,W).

        Returns:
            tuple[Tensor]: Multi-level features that may have various
            resolutions.
        """
        x = self.backbone(inputs)
        if self.with_neck:
            x = self.neck(x)

        return x

    def _load_state_dict_pre_hook(self, state_dict, prefix, local_meta, *args,
                                  **kwargs):
        """A hook function to convert old-version state dict of
        :class:`TopdownHeatmapSimpleHead` (before MMPose v1.0.0) to a
        compatible format of :class:`HeatmapHead`.

        The hook will be automatically registered during initialization.
        """
        version = local_meta.get('version', None)
        if version and version >= self._version:
            return

        # convert old-version state dict
        keys = list(state_dict.keys())
        for k in keys:
            if 'keypoint_head' in k:
                v = state_dict.pop(k)
                k = k.replace('keypoint_head', 'head')
                state_dict[k] = v