File size: 7,629 Bytes
cc0dd3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# Copyright (c) OpenMMLab. All rights reserved.
from itertools import zip_longest
from typing import Optional

from torch import Tensor

from mmpose.registry import MODELS
from mmpose.utils.typing import (ConfigType, InstanceList, OptConfigType,
                                 OptMultiConfig, PixelDataList, SampleList)
from .base import BasePoseEstimator


@MODELS.register_module()
class TopdownPoseEstimator(BasePoseEstimator):
    """Base class for top-down pose estimators.

    Args:
        backbone (dict): The backbone config
        neck (dict, optional): The neck config. Defaults to ``None``
        head (dict, optional): The head config. Defaults to ``None``
        train_cfg (dict, optional): The runtime config for training process.
            Defaults to ``None``
        test_cfg (dict, optional): The runtime config for testing process.
            Defaults to ``None``
        data_preprocessor (dict, optional): The data preprocessing config to
            build the instance of :class:`BaseDataPreprocessor`. Defaults to
            ``None``
        init_cfg (dict, optional): The config to control the initialization.
            Defaults to ``None``
        metainfo (dict): Meta information for dataset, such as keypoints
            definition and properties. If set, the metainfo of the input data
            batch will be overridden. For more details, please refer to
            https://mmpose.readthedocs.io/en/latest/user_guides/
            prepare_datasets.html#create-a-custom-dataset-info-
            config-file-for-the-dataset. Defaults to ``None``
    """

    def __init__(self,
                 backbone: ConfigType,
                 neck: OptConfigType = None,
                 head: OptConfigType = None,
                 train_cfg: OptConfigType = None,
                 test_cfg: OptConfigType = None,
                 data_preprocessor: OptConfigType = None,
                 init_cfg: OptMultiConfig = None,
                 metainfo: Optional[dict] = None):
        super().__init__(
            backbone=backbone,
            neck=neck,
            head=head,
            train_cfg=train_cfg,
            test_cfg=test_cfg,
            data_preprocessor=data_preprocessor,
            init_cfg=init_cfg,
            metainfo=metainfo)

    def loss(self, inputs: Tensor, data_samples: SampleList) -> dict:
        """Calculate losses from a batch of inputs and data samples.

        Args:
            inputs (Tensor): Inputs with shape (N, C, H, W).
            data_samples (List[:obj:`PoseDataSample`]): The batch
                data samples.

        Returns:
            dict: A dictionary of losses.
        """
        feats = self.extract_feat(inputs)

        losses = dict()

        if self.with_head:
            losses.update(
                self.head.loss(feats, data_samples, train_cfg=self.train_cfg))

        return losses

    def predict(self, inputs: Tensor, data_samples: SampleList) -> SampleList:
        """Predict results from a batch of inputs and data samples with post-
        processing.

        Args:
            inputs (Tensor): Inputs with shape (N, C, H, W)
            data_samples (List[:obj:`PoseDataSample`]): The batch
                data samples

        Returns:
            list[:obj:`PoseDataSample`]: The pose estimation results of the
            input images. The return value is `PoseDataSample` instances with
            ``pred_instances`` and ``pred_fields``(optional) field , and
            ``pred_instances`` usually contains the following keys:

                - keypoints (Tensor): predicted keypoint coordinates in shape
                    (num_instances, K, D) where K is the keypoint number and D
                    is the keypoint dimension
                - keypoint_scores (Tensor): predicted keypoint scores in shape
                    (num_instances, K)
        """
        assert self.with_head, (
            'The model must have head to perform prediction.')

        if self.test_cfg.get('flip_test', False):
            _feats = self.extract_feat(inputs)
            _feats_flip = self.extract_feat(inputs.flip(-1))
            feats = [_feats, _feats_flip]
        else:
            feats = self.extract_feat(inputs)

        preds = self.head.predict(feats, data_samples, test_cfg=self.test_cfg)

        if isinstance(preds, tuple):
            batch_pred_instances, batch_pred_fields = preds
        else:
            batch_pred_instances = preds
            batch_pred_fields = None

        results = self.add_pred_to_datasample(batch_pred_instances,
                                              batch_pred_fields, data_samples)

        return results

    def add_pred_to_datasample(self, batch_pred_instances: InstanceList,
                               batch_pred_fields: Optional[PixelDataList],
                               batch_data_samples: SampleList) -> SampleList:
        """Add predictions into data samples.

        Args:
            batch_pred_instances (List[InstanceData]): The predicted instances
                of the input data batch
            batch_pred_fields (List[PixelData], optional): The predicted
                fields (e.g. heatmaps) of the input batch
            batch_data_samples (List[PoseDataSample]): The input data batch

        Returns:
            List[PoseDataSample]: A list of data samples where the predictions
            are stored in the ``pred_instances`` field of each data sample.
        """
        assert len(batch_pred_instances) == len(batch_data_samples)
        if batch_pred_fields is None:
            batch_pred_fields = []
        output_keypoint_indices = self.test_cfg.get('output_keypoint_indices',
                                                    None)

        for pred_instances, pred_fields, data_sample in zip_longest(
                batch_pred_instances, batch_pred_fields, batch_data_samples):

            gt_instances = data_sample.gt_instances

            # convert keypoint coordinates from input space to image space
            bbox_centers = gt_instances.bbox_centers
            bbox_scales = gt_instances.bbox_scales
            input_size = data_sample.metainfo['input_size']

            pred_instances.keypoints = pred_instances.keypoints / input_size \
                * bbox_scales + bbox_centers - 0.5 * bbox_scales

            if output_keypoint_indices is not None:
                # select output keypoints with given indices
                num_keypoints = pred_instances.keypoints.shape[1]
                for key, value in pred_instances.all_items():
                    if key.startswith('keypoint'):
                        pred_instances.set_field(
                            value[:, output_keypoint_indices], key)

            # add bbox information into pred_instances
            pred_instances.bboxes = gt_instances.bboxes
            pred_instances.bbox_scores = gt_instances.bbox_scores

            data_sample.pred_instances = pred_instances

            if pred_fields is not None:
                if output_keypoint_indices is not None:
                    # select output heatmap channels with keypoint indices
                    # when the number of heatmap channel matches num_keypoints
                    for key, value in pred_fields.all_items():
                        if value.shape[0] != num_keypoints:
                            continue
                        pred_fields.set_field(value[output_keypoint_indices],
                                              key)
                data_sample.pred_fields = pred_fields

        return batch_data_samples