Spaces:
Runtime error
Runtime error
File size: 11,589 Bytes
cc0dd3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
# Copyright (c) OpenMMLab. All rights reserved.
import math
from typing import Tuple
import cv2
import numpy as np
def bbox_xyxy2xywh(bbox_xyxy: np.ndarray) -> np.ndarray:
"""Transform the bbox format from x1y1x2y2 to xywh.
Args:
bbox_xyxy (np.ndarray): Bounding boxes (with scores), shaped (n, 4) or
(n, 5). (left, top, right, bottom, [score])
Returns:
np.ndarray: Bounding boxes (with scores),
shaped (n, 4) or (n, 5). (left, top, width, height, [score])
"""
bbox_xywh = bbox_xyxy.copy()
bbox_xywh[:, 2] = bbox_xywh[:, 2] - bbox_xywh[:, 0]
bbox_xywh[:, 3] = bbox_xywh[:, 3] - bbox_xywh[:, 1]
return bbox_xywh
def bbox_xywh2xyxy(bbox_xywh: np.ndarray) -> np.ndarray:
"""Transform the bbox format from xywh to x1y1x2y2.
Args:
bbox_xywh (ndarray): Bounding boxes (with scores),
shaped (n, 4) or (n, 5). (left, top, width, height, [score])
Returns:
np.ndarray: Bounding boxes (with scores), shaped (n, 4) or
(n, 5). (left, top, right, bottom, [score])
"""
bbox_xyxy = bbox_xywh.copy()
bbox_xyxy[:, 2] = bbox_xyxy[:, 2] + bbox_xyxy[:, 0]
bbox_xyxy[:, 3] = bbox_xyxy[:, 3] + bbox_xyxy[:, 1]
return bbox_xyxy
def bbox_xyxy2cs(bbox: np.ndarray,
padding: float = 1.) -> Tuple[np.ndarray, np.ndarray]:
"""Transform the bbox format from (x,y,w,h) into (center, scale)
Args:
bbox (ndarray): Bounding box(es) in shape (4,) or (n, 4), formatted
as (left, top, right, bottom)
padding (float): BBox padding factor that will be multilied to scale.
Default: 1.0
Returns:
tuple: A tuple containing center and scale.
- np.ndarray[float32]: Center (x, y) of the bbox in shape (2,) or
(n, 2)
- np.ndarray[float32]: Scale (w, h) of the bbox in shape (2,) or
(n, 2)
"""
# convert single bbox from (4, ) to (1, 4)
dim = bbox.ndim
if dim == 1:
bbox = bbox[None, :]
x1, y1, x2, y2 = np.hsplit(bbox, [1, 2, 3])
center = np.hstack([x1 + x2, y1 + y2]) * 0.5
scale = np.hstack([x2 - x1, y2 - y1]) * padding
if dim == 1:
center = center[0]
scale = scale[0]
return center, scale
def bbox_xywh2cs(bbox: np.ndarray,
padding: float = 1.) -> Tuple[np.ndarray, np.ndarray]:
"""Transform the bbox format from (x,y,w,h) into (center, scale)
Args:
bbox (ndarray): Bounding box(es) in shape (4,) or (n, 4), formatted
as (x, y, h, w)
padding (float): BBox padding factor that will be multilied to scale.
Default: 1.0
Returns:
tuple: A tuple containing center and scale.
- np.ndarray[float32]: Center (x, y) of the bbox in shape (2,) or
(n, 2)
- np.ndarray[float32]: Scale (w, h) of the bbox in shape (2,) or
(n, 2)
"""
# convert single bbox from (4, ) to (1, 4)
dim = bbox.ndim
if dim == 1:
bbox = bbox[None, :]
x, y, w, h = np.hsplit(bbox, [1, 2, 3])
center = np.hstack([x + w * 0.5, y + h * 0.5])
scale = np.hstack([w, h]) * padding
if dim == 1:
center = center[0]
scale = scale[0]
return center, scale
def bbox_cs2xyxy(center: np.ndarray,
scale: np.ndarray,
padding: float = 1.) -> np.ndarray:
"""Transform the bbox format from (center, scale) to (x,y,w,h).
Args:
center (ndarray): BBox center (x, y) in shape (2,) or (n, 2)
scale (ndarray): BBox scale (w, h) in shape (2,) or (n, 2)
padding (float): BBox padding factor that will be multilied to scale.
Default: 1.0
Returns:
ndarray[float32]: BBox (x, y, w, h) in shape (4, ) or (n, 4)
"""
dim = center.ndim
assert scale.ndim == dim
if dim == 1:
center = center[None, :]
scale = scale[None, :]
wh = scale / padding
xy = center - 0.5 * wh
bbox = np.hstack((xy, xy + wh))
if dim == 1:
bbox = bbox[0]
return bbox
def bbox_cs2xywh(center: np.ndarray,
scale: np.ndarray,
padding: float = 1.) -> np.ndarray:
"""Transform the bbox format from (center, scale) to (x,y,w,h).
Args:
center (ndarray): BBox center (x, y) in shape (2,) or (n, 2)
scale (ndarray): BBox scale (w, h) in shape (2,) or (n, 2)
padding (float): BBox padding factor that will be multilied to scale.
Default: 1.0
Returns:
ndarray[float32]: BBox (x, y, w, h) in shape (4, ) or (n, 4)
"""
dim = center.ndim
assert scale.ndim == dim
if dim == 1:
center = center[None, :]
scale = scale[None, :]
wh = scale / padding
xy = center - 0.5 * wh
bbox = np.hstack((xy, wh))
if dim == 1:
bbox = bbox[0]
return bbox
def flip_bbox(bbox: np.ndarray,
image_size: Tuple[int, int],
bbox_format: str = 'xywh',
direction: str = 'horizontal') -> np.ndarray:
"""Flip the bbox in the given direction.
Args:
bbox (np.ndarray): The bounding boxes. The shape should be (..., 4)
if ``bbox_format`` is ``'xyxy'`` or ``'xywh'``, and (..., 2) if
``bbox_format`` is ``'center'``
image_size (tuple): The image shape in [w, h]
bbox_format (str): The bbox format. Options are ``'xywh'``, ``'xyxy'``
and ``'center'``.
direction (str): The flip direction. Options are ``'horizontal'``,
``'vertical'`` and ``'diagonal'``. Defaults to ``'horizontal'``
Returns:
np.ndarray: The flipped bounding boxes.
"""
direction_options = {'horizontal', 'vertical', 'diagonal'}
assert direction in direction_options, (
f'Invalid flipping direction "{direction}". '
f'Options are {direction_options}')
format_options = {'xywh', 'xyxy', 'center'}
assert bbox_format in format_options, (
f'Invalid bbox format "{bbox_format}". '
f'Options are {format_options}')
bbox_flipped = bbox.copy()
w, h = image_size
# TODO: consider using "integer corner" coordinate system
if direction == 'horizontal':
if bbox_format == 'xywh' or bbox_format == 'center':
bbox_flipped[..., 0] = w - bbox[..., 0] - 1
elif bbox_format == 'xyxy':
bbox_flipped[..., ::2] = w - bbox[..., ::2] - 1
elif direction == 'vertical':
if bbox_format == 'xywh' or bbox_format == 'center':
bbox_flipped[..., 1] = h - bbox[..., 1] - 1
elif bbox_format == 'xyxy':
bbox_flipped[..., 1::2] = h - bbox[..., 1::2] - 1
elif direction == 'diagonal':
if bbox_format == 'xywh' or bbox_format == 'center':
bbox_flipped[..., :2] = [w, h] - bbox[..., :2] - 1
elif bbox_format == 'xyxy':
bbox_flipped[...] = [w, h, w, h] - bbox - 1
return bbox_flipped
def get_udp_warp_matrix(
center: np.ndarray,
scale: np.ndarray,
rot: float,
output_size: Tuple[int, int],
) -> np.ndarray:
"""Calculate the affine transformation matrix under the unbiased
constraint. See `UDP (CVPR 2020)`_ for details.
Note:
- The bbox number: N
Args:
center (np.ndarray[2, ]): Center of the bounding box (x, y).
scale (np.ndarray[2, ]): Scale of the bounding box
wrt [width, height].
rot (float): Rotation angle (degree).
output_size (tuple): Size ([w, h]) of the output image
Returns:
np.ndarray: A 2x3 transformation matrix
.. _`UDP (CVPR 2020)`: https://arxiv.org/abs/1911.07524
"""
assert len(center) == 2
assert len(scale) == 2
assert len(output_size) == 2
input_size = center * 2
rot_rad = np.deg2rad(rot)
warp_mat = np.zeros((2, 3), dtype=np.float32)
scale_x = (output_size[0] - 1) / scale[0]
scale_y = (output_size[1] - 1) / scale[1]
warp_mat[0, 0] = math.cos(rot_rad) * scale_x
warp_mat[0, 1] = -math.sin(rot_rad) * scale_x
warp_mat[0, 2] = scale_x * (-0.5 * input_size[0] * math.cos(rot_rad) +
0.5 * input_size[1] * math.sin(rot_rad) +
0.5 * scale[0])
warp_mat[1, 0] = math.sin(rot_rad) * scale_y
warp_mat[1, 1] = math.cos(rot_rad) * scale_y
warp_mat[1, 2] = scale_y * (-0.5 * input_size[0] * math.sin(rot_rad) -
0.5 * input_size[1] * math.cos(rot_rad) +
0.5 * scale[1])
return warp_mat
def get_warp_matrix(center: np.ndarray,
scale: np.ndarray,
rot: float,
output_size: Tuple[int, int],
shift: Tuple[float, float] = (0., 0.),
inv: bool = False) -> np.ndarray:
"""Calculate the affine transformation matrix that can warp the bbox area
in the input image to the output size.
Args:
center (np.ndarray[2, ]): Center of the bounding box (x, y).
scale (np.ndarray[2, ]): Scale of the bounding box
wrt [width, height].
rot (float): Rotation angle (degree).
output_size (np.ndarray[2, ] | list(2,)): Size of the
destination heatmaps.
shift (0-100%): Shift translation ratio wrt the width/height.
Default (0., 0.).
inv (bool): Option to inverse the affine transform direction.
(inv=False: src->dst or inv=True: dst->src)
Returns:
np.ndarray: A 2x3 transformation matrix
"""
assert len(center) == 2
assert len(scale) == 2
assert len(output_size) == 2
assert len(shift) == 2
shift = np.array(shift)
src_w = scale[0]
dst_w = output_size[0]
dst_h = output_size[1]
rot_rad = np.deg2rad(rot)
src_dir = _rotate_point(np.array([0., src_w * -0.5]), rot_rad)
dst_dir = np.array([0., dst_w * -0.5])
src = np.zeros((3, 2), dtype=np.float32)
src[0, :] = center + scale * shift
src[1, :] = center + src_dir + scale * shift
src[2, :] = _get_3rd_point(src[0, :], src[1, :])
dst = np.zeros((3, 2), dtype=np.float32)
dst[0, :] = [dst_w * 0.5, dst_h * 0.5]
dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir
dst[2, :] = _get_3rd_point(dst[0, :], dst[1, :])
if inv:
warp_mat = cv2.getAffineTransform(np.float32(dst), np.float32(src))
else:
warp_mat = cv2.getAffineTransform(np.float32(src), np.float32(dst))
return warp_mat
def _rotate_point(pt: np.ndarray, angle_rad: float) -> np.ndarray:
"""Rotate a point by an angle.
Args:
pt (np.ndarray): 2D point coordinates (x, y) in shape (2, )
angle_rad (float): rotation angle in radian
Returns:
np.ndarray: Rotated point in shape (2, )
"""
sn, cs = np.sin(angle_rad), np.cos(angle_rad)
rot_mat = np.array([[cs, -sn], [sn, cs]])
return rot_mat @ pt
def _get_3rd_point(a: np.ndarray, b: np.ndarray):
"""To calculate the affine matrix, three pairs of points are required. This
function is used to get the 3rd point, given 2D points a & b.
The 3rd point is defined by rotating vector `a - b` by 90 degrees
anticlockwise, using b as the rotation center.
Args:
a (np.ndarray): The 1st point (x,y) in shape (2, )
b (np.ndarray): The 2nd point (x,y) in shape (2, )
Returns:
np.ndarray: The 3rd point.
"""
direction = a - b
c = b + np.r_[-direction[1], direction[0]]
return c
|