Spaces:
Runtime error
Runtime error
File size: 10,679 Bytes
cc0dd3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
# Copyright (c) OpenMMLab. All rights reserved.
from abc import ABCMeta, abstractmethod
import numpy as np
import torch
from mmengine.registry import Registry
CAMERAS = Registry('camera')
class SingleCameraBase(metaclass=ABCMeta):
"""Base class for single camera model.
Args:
param (dict): Camera parameters
Methods:
world_to_camera: Project points from world coordinates to camera
coordinates
camera_to_world: Project points from camera coordinates to world
coordinates
camera_to_pixel: Project points from camera coordinates to pixel
coordinates
world_to_pixel: Project points from world coordinates to pixel
coordinates
"""
@abstractmethod
def __init__(self, param):
"""Load camera parameters and check validity."""
def world_to_camera(self, X):
"""Project points from world coordinates to camera coordinates."""
raise NotImplementedError
def camera_to_world(self, X):
"""Project points from camera coordinates to world coordinates."""
raise NotImplementedError
def camera_to_pixel(self, X):
"""Project points from camera coordinates to pixel coordinates."""
raise NotImplementedError
def world_to_pixel(self, X):
"""Project points from world coordinates to pixel coordinates."""
_X = self.world_to_camera(X)
return self.camera_to_pixel(_X)
@CAMERAS.register_module()
class SimpleCamera(SingleCameraBase):
"""Camera model to calculate coordinate transformation with given
intrinsic/extrinsic camera parameters.
Note:
The keypoint coordinate should be an np.ndarray with a shape of
[...,J, C] where J is the keypoint number of an instance, and C is
the coordinate dimension. For example:
[J, C]: shape of joint coordinates of a person with J joints.
[N, J, C]: shape of a batch of person joint coordinates.
[N, T, J, C]: shape of a batch of pose sequences.
Args:
param (dict): camera parameters including:
- R: 3x3, camera rotation matrix (camera-to-world)
- T: 3x1, camera translation (camera-to-world)
- K: (optional) 2x3, camera intrinsic matrix
- k: (optional) nx1, camera radial distortion coefficients
- p: (optional) mx1, camera tangential distortion coefficients
- f: (optional) 2x1, camera focal length
- c: (optional) 2x1, camera center
if K is not provided, it will be calculated from f and c.
Methods:
world_to_camera: Project points from world coordinates to camera
coordinates
camera_to_pixel: Project points from camera coordinates to pixel
coordinates
world_to_pixel: Project points from world coordinates to pixel
coordinates
"""
def __init__(self, param):
self.param = {}
# extrinsic param
R = np.array(param['R'], dtype=np.float32)
T = np.array(param['T'], dtype=np.float32)
assert R.shape == (3, 3)
assert T.shape == (3, 1)
# The camera matrices are transposed in advance because the joint
# coordinates are stored as row vectors.
self.param['R_c2w'] = R.T
self.param['T_c2w'] = T.T
self.param['R_w2c'] = R
self.param['T_w2c'] = -self.param['T_c2w'] @ self.param['R_w2c']
# intrinsic param
if 'K' in param:
K = np.array(param['K'], dtype=np.float32)
assert K.shape == (2, 3)
self.param['K'] = K.T
self.param['f'] = np.array([K[0, 0], K[1, 1]])[:, np.newaxis]
self.param['c'] = np.array([K[0, 2], K[1, 2]])[:, np.newaxis]
elif 'f' in param and 'c' in param:
f = np.array(param['f'], dtype=np.float32)
c = np.array(param['c'], dtype=np.float32)
assert f.shape == (2, 1)
assert c.shape == (2, 1)
self.param['K'] = np.concatenate((np.diagflat(f), c), axis=-1).T
self.param['f'] = f
self.param['c'] = c
else:
raise ValueError('Camera intrinsic parameters are missing. '
'Either "K" or "f"&"c" should be provided.')
# distortion param
if 'k' in param and 'p' in param:
self.undistortion = True
self.param['k'] = np.array(param['k'], dtype=np.float32).flatten()
self.param['p'] = np.array(param['p'], dtype=np.float32).flatten()
assert self.param['k'].size in {3, 6}
assert self.param['p'].size == 2
else:
self.undistortion = False
def world_to_camera(self, X):
assert isinstance(X, np.ndarray)
assert X.ndim >= 2 and X.shape[-1] == 3
return X @ self.param['R_w2c'] + self.param['T_w2c']
def camera_to_world(self, X):
assert isinstance(X, np.ndarray)
assert X.ndim >= 2 and X.shape[-1] == 3
return X @ self.param['R_c2w'] + self.param['T_c2w']
def camera_to_pixel(self, X):
assert isinstance(X, np.ndarray)
assert X.ndim >= 2 and X.shape[-1] == 3
_X = X / X[..., 2:]
if self.undistortion:
k = self.param['k']
p = self.param['p']
_X_2d = _X[..., :2]
r2 = (_X_2d**2).sum(-1)
radial = 1 + sum(ki * r2**(i + 1) for i, ki in enumerate(k[:3]))
if k.size == 6:
radial /= 1 + sum(
(ki * r2**(i + 1) for i, ki in enumerate(k[3:])))
tangential = 2 * (p[1] * _X[..., 0] + p[0] * _X[..., 1])
_X[..., :2] = _X_2d * (radial + tangential)[..., None] + np.outer(
r2, p[::-1]).reshape(_X_2d.shape)
return _X @ self.param['K']
def pixel_to_camera(self, X):
assert isinstance(X, np.ndarray)
assert X.ndim >= 2 and X.shape[-1] == 3
_X = X.copy()
_X[:, :2] = (X[:, :2] - self.param['c'].T) / self.param['f'].T * X[:,
[2]]
return _X
@CAMERAS.register_module()
class SimpleCameraTorch(SingleCameraBase):
"""Camera model to calculate coordinate transformation with given
intrinsic/extrinsic camera parameters.
Notes:
The keypoint coordinate should be an np.ndarray with a shape of
[...,J, C] where J is the keypoint number of an instance, and C is
the coordinate dimension. For example:
[J, C]: shape of joint coordinates of a person with J joints.
[N, J, C]: shape of a batch of person joint coordinates.
[N, T, J, C]: shape of a batch of pose sequences.
Args:
param (dict): camera parameters including:
- R: 3x3, camera rotation matrix (camera-to-world)
- T: 3x1, camera translation (camera-to-world)
- K: (optional) 2x3, camera intrinsic matrix
- k: (optional) nx1, camera radial distortion coefficients
- p: (optional) mx1, camera tangential distortion coefficients
- f: (optional) 2x1, camera focal length
- c: (optional) 2x1, camera center
if K is not provided, it will be calculated from f and c.
Methods:
world_to_camera: Project points from world coordinates to camera
coordinates
camera_to_pixel: Project points from camera coordinates to pixel
coordinates
world_to_pixel: Project points from world coordinates to pixel
coordinates
"""
def __init__(self, param, device):
self.param = {}
# extrinsic param
R = torch.tensor(param['R'], device=device)
T = torch.tensor(param['T'], device=device)
assert R.shape == (3, 3)
assert T.shape == (3, 1)
# The camera matrices are transposed in advance because the joint
# coordinates are stored as row vectors.
self.param['R_c2w'] = R.T
self.param['T_c2w'] = T.T
self.param['R_w2c'] = R
self.param['T_w2c'] = -self.param['T_c2w'] @ self.param['R_w2c']
# intrinsic param
if 'K' in param:
K = torch.tensor(param['K'], device=device)
assert K.shape == (2, 3)
self.param['K'] = K.T
self.param['f'] = torch.tensor([[K[0, 0]], [K[1, 1]]],
device=device)
self.param['c'] = torch.tensor([[K[0, 2]], [K[1, 2]]],
device=device)
elif 'f' in param and 'c' in param:
f = torch.tensor(param['f'], device=device)
c = torch.tensor(param['c'], device=device)
assert f.shape == (2, 1)
assert c.shape == (2, 1)
self.param['K'] = torch.cat([torch.diagflat(f), c], dim=-1).T
self.param['f'] = f
self.param['c'] = c
else:
raise ValueError('Camera intrinsic parameters are missing. '
'Either "K" or "f"&"c" should be provided.')
# distortion param
if 'k' in param and 'p' in param:
self.undistortion = True
self.param['k'] = torch.tensor(param['k'], device=device).view(-1)
self.param['p'] = torch.tensor(param['p'], device=device).view(-1)
assert len(self.param['k']) in {3, 6}
assert len(self.param['p']) == 2
else:
self.undistortion = False
def world_to_camera(self, X):
assert isinstance(X, torch.Tensor)
assert X.ndim >= 2 and X.shape[-1] == 3
return X @ self.param['R_w2c'] + self.param['T_w2c']
def camera_to_world(self, X):
assert isinstance(X, torch.Tensor)
assert X.ndim >= 2 and X.shape[-1] == 3
return X @ self.param['R_c2w'] + self.param['T_c2w']
def camera_to_pixel(self, X):
assert isinstance(X, torch.Tensor)
assert X.ndim >= 2 and X.shape[-1] == 3
_X = X / X[..., 2:]
if self.undistortion:
k = self.param['k']
p = self.param['p']
_X_2d = _X[..., :2]
r2 = (_X_2d**2).sum(-1)
radial = 1 + sum(ki * r2**(i + 1) for i, ki in enumerate(k[:3]))
if k.size == 6:
radial /= 1 + sum(
(ki * r2**(i + 1) for i, ki in enumerate(k[3:])))
tangential = 2 * (p[1] * _X[..., 0] + p[0] * _X[..., 1])
_X[..., :2] = _X_2d * (radial + tangential)[..., None] + torch.ger(
r2, p.flip([0])).reshape(_X_2d.shape)
return _X @ self.param['K']
|