File size: 10,679 Bytes
cc0dd3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# Copyright (c) OpenMMLab. All rights reserved.
from abc import ABCMeta, abstractmethod

import numpy as np
import torch
from mmengine.registry import Registry

CAMERAS = Registry('camera')


class SingleCameraBase(metaclass=ABCMeta):
    """Base class for single camera model.

    Args:
        param (dict): Camera parameters

    Methods:
        world_to_camera: Project points from world coordinates to camera
            coordinates
        camera_to_world: Project points from camera coordinates to world
            coordinates
        camera_to_pixel: Project points from camera coordinates to pixel
            coordinates
        world_to_pixel: Project points from world coordinates to pixel
            coordinates
    """

    @abstractmethod
    def __init__(self, param):
        """Load camera parameters and check validity."""

    def world_to_camera(self, X):
        """Project points from world coordinates to camera coordinates."""
        raise NotImplementedError

    def camera_to_world(self, X):
        """Project points from camera coordinates to world coordinates."""
        raise NotImplementedError

    def camera_to_pixel(self, X):
        """Project points from camera coordinates to pixel coordinates."""
        raise NotImplementedError

    def world_to_pixel(self, X):
        """Project points from world coordinates to pixel coordinates."""
        _X = self.world_to_camera(X)
        return self.camera_to_pixel(_X)


@CAMERAS.register_module()
class SimpleCamera(SingleCameraBase):
    """Camera model to calculate coordinate transformation with given
    intrinsic/extrinsic camera parameters.

    Note:
        The keypoint coordinate should be an np.ndarray with a shape of
    [...,J, C] where J is the keypoint number of an instance, and C is
    the coordinate dimension. For example:

        [J, C]: shape of joint coordinates of a person with J joints.
        [N, J, C]: shape of a batch of person joint coordinates.
        [N, T, J, C]: shape of a batch of pose sequences.

    Args:
        param (dict): camera parameters including:
            - R: 3x3, camera rotation matrix (camera-to-world)
            - T: 3x1, camera translation (camera-to-world)
            - K: (optional) 2x3, camera intrinsic matrix
            - k: (optional) nx1, camera radial distortion coefficients
            - p: (optional) mx1, camera tangential distortion coefficients
            - f: (optional) 2x1, camera focal length
            - c: (optional) 2x1, camera center
        if K is not provided, it will be calculated from f and c.

    Methods:
        world_to_camera: Project points from world coordinates to camera
            coordinates
        camera_to_pixel: Project points from camera coordinates to pixel
            coordinates
        world_to_pixel: Project points from world coordinates to pixel
            coordinates
    """

    def __init__(self, param):

        self.param = {}
        # extrinsic param
        R = np.array(param['R'], dtype=np.float32)
        T = np.array(param['T'], dtype=np.float32)
        assert R.shape == (3, 3)
        assert T.shape == (3, 1)
        # The camera matrices are transposed in advance because the joint
        # coordinates are stored as row vectors.
        self.param['R_c2w'] = R.T
        self.param['T_c2w'] = T.T
        self.param['R_w2c'] = R
        self.param['T_w2c'] = -self.param['T_c2w'] @ self.param['R_w2c']

        # intrinsic param
        if 'K' in param:
            K = np.array(param['K'], dtype=np.float32)
            assert K.shape == (2, 3)
            self.param['K'] = K.T
            self.param['f'] = np.array([K[0, 0], K[1, 1]])[:, np.newaxis]
            self.param['c'] = np.array([K[0, 2], K[1, 2]])[:, np.newaxis]
        elif 'f' in param and 'c' in param:
            f = np.array(param['f'], dtype=np.float32)
            c = np.array(param['c'], dtype=np.float32)
            assert f.shape == (2, 1)
            assert c.shape == (2, 1)
            self.param['K'] = np.concatenate((np.diagflat(f), c), axis=-1).T
            self.param['f'] = f
            self.param['c'] = c
        else:
            raise ValueError('Camera intrinsic parameters are missing. '
                             'Either "K" or "f"&"c" should be provided.')

        # distortion param
        if 'k' in param and 'p' in param:
            self.undistortion = True
            self.param['k'] = np.array(param['k'], dtype=np.float32).flatten()
            self.param['p'] = np.array(param['p'], dtype=np.float32).flatten()
            assert self.param['k'].size in {3, 6}
            assert self.param['p'].size == 2
        else:
            self.undistortion = False

    def world_to_camera(self, X):
        assert isinstance(X, np.ndarray)
        assert X.ndim >= 2 and X.shape[-1] == 3
        return X @ self.param['R_w2c'] + self.param['T_w2c']

    def camera_to_world(self, X):
        assert isinstance(X, np.ndarray)
        assert X.ndim >= 2 and X.shape[-1] == 3
        return X @ self.param['R_c2w'] + self.param['T_c2w']

    def camera_to_pixel(self, X):
        assert isinstance(X, np.ndarray)
        assert X.ndim >= 2 and X.shape[-1] == 3

        _X = X / X[..., 2:]

        if self.undistortion:
            k = self.param['k']
            p = self.param['p']
            _X_2d = _X[..., :2]
            r2 = (_X_2d**2).sum(-1)
            radial = 1 + sum(ki * r2**(i + 1) for i, ki in enumerate(k[:3]))
            if k.size == 6:
                radial /= 1 + sum(
                    (ki * r2**(i + 1) for i, ki in enumerate(k[3:])))

            tangential = 2 * (p[1] * _X[..., 0] + p[0] * _X[..., 1])

            _X[..., :2] = _X_2d * (radial + tangential)[..., None] + np.outer(
                r2, p[::-1]).reshape(_X_2d.shape)
        return _X @ self.param['K']

    def pixel_to_camera(self, X):
        assert isinstance(X, np.ndarray)
        assert X.ndim >= 2 and X.shape[-1] == 3
        _X = X.copy()
        _X[:, :2] = (X[:, :2] - self.param['c'].T) / self.param['f'].T * X[:,
                                                                           [2]]
        return _X


@CAMERAS.register_module()
class SimpleCameraTorch(SingleCameraBase):
    """Camera model to calculate coordinate transformation with given
    intrinsic/extrinsic camera parameters.

    Notes:
        The keypoint coordinate should be an np.ndarray with a shape of
    [...,J, C] where J is the keypoint number of an instance, and C is
    the coordinate dimension. For example:

        [J, C]: shape of joint coordinates of a person with J joints.
        [N, J, C]: shape of a batch of person joint coordinates.
        [N, T, J, C]: shape of a batch of pose sequences.

    Args:
        param (dict): camera parameters including:
            - R: 3x3, camera rotation matrix (camera-to-world)
            - T: 3x1, camera translation (camera-to-world)
            - K: (optional) 2x3, camera intrinsic matrix
            - k: (optional) nx1, camera radial distortion coefficients
            - p: (optional) mx1, camera tangential distortion coefficients
            - f: (optional) 2x1, camera focal length
            - c: (optional) 2x1, camera center
        if K is not provided, it will be calculated from f and c.

    Methods:
        world_to_camera: Project points from world coordinates to camera
            coordinates
        camera_to_pixel: Project points from camera coordinates to pixel
            coordinates
        world_to_pixel: Project points from world coordinates to pixel
            coordinates
    """

    def __init__(self, param, device):

        self.param = {}
        # extrinsic param
        R = torch.tensor(param['R'], device=device)
        T = torch.tensor(param['T'], device=device)

        assert R.shape == (3, 3)
        assert T.shape == (3, 1)
        # The camera matrices are transposed in advance because the joint
        # coordinates are stored as row vectors.
        self.param['R_c2w'] = R.T
        self.param['T_c2w'] = T.T
        self.param['R_w2c'] = R
        self.param['T_w2c'] = -self.param['T_c2w'] @ self.param['R_w2c']

        # intrinsic param
        if 'K' in param:
            K = torch.tensor(param['K'], device=device)
            assert K.shape == (2, 3)
            self.param['K'] = K.T
            self.param['f'] = torch.tensor([[K[0, 0]], [K[1, 1]]],
                                           device=device)
            self.param['c'] = torch.tensor([[K[0, 2]], [K[1, 2]]],
                                           device=device)
        elif 'f' in param and 'c' in param:
            f = torch.tensor(param['f'], device=device)
            c = torch.tensor(param['c'], device=device)
            assert f.shape == (2, 1)
            assert c.shape == (2, 1)
            self.param['K'] = torch.cat([torch.diagflat(f), c], dim=-1).T
            self.param['f'] = f
            self.param['c'] = c
        else:
            raise ValueError('Camera intrinsic parameters are missing. '
                             'Either "K" or "f"&"c" should be provided.')

        # distortion param
        if 'k' in param and 'p' in param:
            self.undistortion = True
            self.param['k'] = torch.tensor(param['k'], device=device).view(-1)
            self.param['p'] = torch.tensor(param['p'], device=device).view(-1)
            assert len(self.param['k']) in {3, 6}
            assert len(self.param['p']) == 2
        else:
            self.undistortion = False

    def world_to_camera(self, X):
        assert isinstance(X, torch.Tensor)
        assert X.ndim >= 2 and X.shape[-1] == 3
        return X @ self.param['R_w2c'] + self.param['T_w2c']

    def camera_to_world(self, X):
        assert isinstance(X, torch.Tensor)
        assert X.ndim >= 2 and X.shape[-1] == 3
        return X @ self.param['R_c2w'] + self.param['T_c2w']

    def camera_to_pixel(self, X):
        assert isinstance(X, torch.Tensor)
        assert X.ndim >= 2 and X.shape[-1] == 3

        _X = X / X[..., 2:]

        if self.undistortion:
            k = self.param['k']
            p = self.param['p']
            _X_2d = _X[..., :2]
            r2 = (_X_2d**2).sum(-1)
            radial = 1 + sum(ki * r2**(i + 1) for i, ki in enumerate(k[:3]))
            if k.size == 6:
                radial /= 1 + sum(
                    (ki * r2**(i + 1) for i, ki in enumerate(k[3:])))

            tangential = 2 * (p[1] * _X[..., 0] + p[0] * _X[..., 1])

            _X[..., :2] = _X_2d * (radial + tangential)[..., None] + torch.ger(
                r2, p.flip([0])).reshape(_X_2d.shape)
        return _X @ self.param['K']