File size: 1,556 Bytes
cc0dd3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Optional, Sequence

from mmengine.hooks import Hook

from mmpretrain.registry import HOOKS
from mmpretrain.utils import get_ori_model


@HOOKS.register_module()
class DenseCLHook(Hook):
    """Hook for DenseCL.

    This hook includes ``loss_lambda`` warmup in DenseCL.
    Borrowed from the authors' code: `<https://github.com/WXinlong/DenseCL>`_.

    Args:
        start_iters (int): The number of warmup iterations to set
            ``loss_lambda=0``. Defaults to 1000.
    """

    def __init__(self, start_iters: int = 1000) -> None:
        self.start_iters = start_iters

    def before_train(self, runner) -> None:
        """Obtain ``loss_lambda`` from algorithm."""
        assert hasattr(get_ori_model(runner.model), 'loss_lambda'), \
            "The runner must have attribute \"loss_lambda\" in DenseCL."
        self.loss_lambda = get_ori_model(runner.model).loss_lambda

    def before_train_iter(self,
                          runner,
                          batch_idx: int,
                          data_batch: Optional[Sequence[dict]] = None) -> None:
        """Adjust ``loss_lambda`` every train iter."""
        assert hasattr(get_ori_model(runner.model), 'loss_lambda'), \
            "The runner must have attribute \"loss_lambda\" in DenseCL."
        cur_iter = runner.iter
        if cur_iter >= self.start_iters:
            get_ori_model(runner.model).loss_lambda = self.loss_lambda
        else:
            get_ori_model(runner.model).loss_lambda = 0.