Spaces:
Runtime error
Runtime error
File size: 11,733 Bytes
cc0dd3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Optional, Sequence, Union
import torch
import torch.nn as nn
import torch.utils.checkpoint as cp
from mmengine.model import ModuleList, Sequential
from mmpretrain.registry import MODELS
from ..utils import (SparseAvgPooling, SparseConv2d, SparseHelper,
SparseMaxPooling, build_norm_layer)
from .convnext import ConvNeXt, ConvNeXtBlock
class SparseConvNeXtBlock(ConvNeXtBlock):
"""Sparse ConvNeXt Block.
Note:
There are two equivalent implementations:
1. DwConv -> SparseLayerNorm -> 1x1 Conv -> GELU -> 1x1 Conv;
all outputs are in (N, C, H, W).
2. DwConv -> SparseLayerNorm -> Permute to (N, H, W, C) -> Linear ->
GELU -> Linear; Permute back
As default, we use the second to align with the official repository.
And it may be slightly faster.
"""
def forward(self, x):
def _inner_forward(x):
shortcut = x
x = self.depthwise_conv(x)
if self.linear_pw_conv:
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
x = self.norm(x, data_format='channel_last')
x = self.pointwise_conv1(x)
x = self.act(x)
if self.grn is not None:
x = self.grn(x, data_format='channel_last')
x = self.pointwise_conv2(x)
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
else:
x = self.norm(x, data_format='channel_first')
x = self.pointwise_conv1(x)
x = self.act(x)
if self.grn is not None:
x = self.grn(x, data_format='channel_first')
x = self.pointwise_conv2(x)
if self.gamma is not None:
x = x.mul(self.gamma.view(1, -1, 1, 1))
x *= SparseHelper._get_active_map_or_index(
H=x.shape[2], returning_active_map=True)
x = shortcut + self.drop_path(x)
return x
if self.with_cp and x.requires_grad:
x = cp.checkpoint(_inner_forward, x)
else:
x = _inner_forward(x)
return x
@MODELS.register_module()
class SparseConvNeXt(ConvNeXt):
"""ConvNeXt with sparse module conversion function.
Modified from
https://github.com/keyu-tian/SparK/blob/main/models/convnext.py
and
https://github.com/keyu-tian/SparK/blob/main/encoder.py
To use ConvNeXt v2, please set ``use_grn=True`` and ``layer_scale_init_value=0.``.
Args:
arch (str | dict): The model's architecture. If string, it should be
one of architecture in ``ConvNeXt.arch_settings``. And if dict, it
should include the following two keys:
- depths (list[int]): Number of blocks at each stage.
- channels (list[int]): The number of channels at each stage.
Defaults to 'tiny'.
in_channels (int): Number of input image channels. Defaults to 3.
stem_patch_size (int): The size of one patch in the stem layer.
Defaults to 4.
norm_cfg (dict): The config dict for norm layers.
Defaults to ``dict(type='SparseLN2d', eps=1e-6)``.
act_cfg (dict): The config dict for activation between pointwise
convolution. Defaults to ``dict(type='GELU')``.
linear_pw_conv (bool): Whether to use linear layer to do pointwise
convolution. Defaults to True.
use_grn (bool): Whether to add Global Response Normalization in the
blocks. Defaults to False.
drop_path_rate (float): Stochastic depth rate. Defaults to 0.
layer_scale_init_value (float): Init value for Layer Scale.
Defaults to 1e-6.
out_indices (Sequence | int): Output from which stages.
Defaults to -1, means the last stage.
frozen_stages (int): Stages to be frozen (all param fixed).
Defaults to 0, which means not freezing any parameters.
gap_before_output (bool): Whether to globally average the feature
map before the final norm layer. In the official repo, it's only
used in classification task. Defaults to True.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Defaults to False.
init_cfg (dict, optional): Initialization config dict.
""" # noqa: E501
def __init__(self,
arch: str = 'small',
in_channels: int = 3,
stem_patch_size: int = 4,
norm_cfg: dict = dict(type='SparseLN2d', eps=1e-6),
act_cfg: dict = dict(type='GELU'),
linear_pw_conv: bool = True,
use_grn: bool = False,
drop_path_rate: float = 0,
layer_scale_init_value: float = 1e-6,
out_indices: int = -1,
frozen_stages: int = 0,
gap_before_output: bool = True,
with_cp: bool = False,
init_cfg: Optional[Union[dict, List[dict]]] = [
dict(
type='TruncNormal',
layer=['Conv2d', 'Linear'],
std=.02,
bias=0.),
dict(
type='Constant', layer=['LayerNorm'], val=1.,
bias=0.),
]):
super(ConvNeXt, self).__init__(init_cfg=init_cfg)
if isinstance(arch, str):
assert arch in self.arch_settings, \
f'Unavailable arch, please choose from ' \
f'({set(self.arch_settings)}) or pass a dict.'
arch = self.arch_settings[arch]
elif isinstance(arch, dict):
assert 'depths' in arch and 'channels' in arch, \
f'The arch dict must have "depths" and "channels", ' \
f'but got {list(arch.keys())}.'
self.depths = arch['depths']
self.channels = arch['channels']
assert (isinstance(self.depths, Sequence)
and isinstance(self.channels, Sequence)
and len(self.depths) == len(self.channels)), \
f'The "depths" ({self.depths}) and "channels" ({self.channels}) ' \
'should be both sequence with the same length.'
self.num_stages = len(self.depths)
if isinstance(out_indices, int):
out_indices = [out_indices]
assert isinstance(out_indices, Sequence), \
f'"out_indices" must by a sequence or int, ' \
f'get {type(out_indices)} instead.'
for i, index in enumerate(out_indices):
if index < 0:
out_indices[i] = 4 + index
assert out_indices[i] >= 0, f'Invalid out_indices {index}'
self.out_indices = out_indices
self.frozen_stages = frozen_stages
self.gap_before_output = gap_before_output
# 4 downsample layers between stages, including the stem layer.
self.downsample_layers = ModuleList()
stem = nn.Sequential(
nn.Conv2d(
in_channels,
self.channels[0],
kernel_size=stem_patch_size,
stride=stem_patch_size),
build_norm_layer(norm_cfg, self.channels[0]),
)
self.downsample_layers.append(stem)
# stochastic depth decay rule
dpr = [
x.item()
for x in torch.linspace(0, drop_path_rate, sum(self.depths))
]
block_idx = 0
# 4 feature resolution stages, each consisting of multiple residual
# blocks
self.stages = nn.ModuleList()
for i in range(self.num_stages):
depth = self.depths[i]
channels = self.channels[i]
if i >= 1:
downsample_layer = nn.Sequential(
build_norm_layer(norm_cfg, self.channels[i - 1]),
nn.Conv2d(
self.channels[i - 1],
channels,
kernel_size=2,
stride=2),
)
self.downsample_layers.append(downsample_layer)
stage = Sequential(*[
SparseConvNeXtBlock(
in_channels=channels,
drop_path_rate=dpr[block_idx + j],
norm_cfg=norm_cfg,
act_cfg=act_cfg,
linear_pw_conv=linear_pw_conv,
layer_scale_init_value=layer_scale_init_value,
use_grn=use_grn,
with_cp=with_cp) for j in range(depth)
])
block_idx += depth
self.stages.append(stage)
self.dense_model_to_sparse(m=self)
def forward(self, x):
outs = []
for i, stage in enumerate(self.stages):
x = self.downsample_layers[i](x)
x = stage(x)
if i in self.out_indices:
if self.gap_before_output:
gap = x.mean([-2, -1], keepdim=True)
outs.append(gap.flatten(1))
else:
outs.append(x)
return tuple(outs)
def dense_model_to_sparse(self, m: nn.Module) -> nn.Module:
"""Convert regular dense modules to sparse modules."""
output = m
if isinstance(m, nn.Conv2d):
m: nn.Conv2d
bias = m.bias is not None
output = SparseConv2d(
m.in_channels,
m.out_channels,
kernel_size=m.kernel_size,
stride=m.stride,
padding=m.padding,
dilation=m.dilation,
groups=m.groups,
bias=bias,
padding_mode=m.padding_mode,
)
output.weight.data.copy_(m.weight.data)
if bias:
output.bias.data.copy_(m.bias.data)
elif isinstance(m, nn.MaxPool2d):
m: nn.MaxPool2d
output = SparseMaxPooling(
m.kernel_size,
stride=m.stride,
padding=m.padding,
dilation=m.dilation,
return_indices=m.return_indices,
ceil_mode=m.ceil_mode)
elif isinstance(m, nn.AvgPool2d):
m: nn.AvgPool2d
output = SparseAvgPooling(
m.kernel_size,
m.stride,
m.padding,
ceil_mode=m.ceil_mode,
count_include_pad=m.count_include_pad,
divisor_override=m.divisor_override)
# elif isinstance(m, (nn.BatchNorm2d, nn.SyncBatchNorm)):
# m: nn.BatchNorm2d
# output = (SparseSyncBatchNorm2d
# if enable_sync_bn else SparseBatchNorm2d)(
# m.weight.shape[0],
# eps=m.eps,
# momentum=m.momentum,
# affine=m.affine,
# track_running_stats=m.track_running_stats)
# output.weight.data.copy_(m.weight.data)
# output.bias.data.copy_(m.bias.data)
# output.running_mean.data.copy_(m.running_mean.data)
# output.running_var.data.copy_(m.running_var.data)
# output.num_batches_tracked.data.copy_(m.num_batches_tracked.data)
for name, child in m.named_children():
output.add_module(name, self.dense_model_to_sparse(child))
del m
return output
|