File size: 11,733 Bytes
cc0dd3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Optional, Sequence, Union

import torch
import torch.nn as nn
import torch.utils.checkpoint as cp
from mmengine.model import ModuleList, Sequential

from mmpretrain.registry import MODELS
from ..utils import (SparseAvgPooling, SparseConv2d, SparseHelper,
                     SparseMaxPooling, build_norm_layer)
from .convnext import ConvNeXt, ConvNeXtBlock


class SparseConvNeXtBlock(ConvNeXtBlock):
    """Sparse ConvNeXt Block.

    Note:
        There are two equivalent implementations:
        1. DwConv -> SparseLayerNorm -> 1x1 Conv -> GELU -> 1x1 Conv;
           all outputs are in (N, C, H, W).
        2. DwConv -> SparseLayerNorm -> Permute to (N, H, W, C) -> Linear ->
           GELU -> Linear; Permute back
        As default, we use the second to align with the official repository.
        And it may be slightly faster.
    """

    def forward(self, x):

        def _inner_forward(x):
            shortcut = x
            x = self.depthwise_conv(x)

            if self.linear_pw_conv:
                x = x.permute(0, 2, 3, 1)  # (N, C, H, W) -> (N, H, W, C)
                x = self.norm(x, data_format='channel_last')
                x = self.pointwise_conv1(x)
                x = self.act(x)
                if self.grn is not None:
                    x = self.grn(x, data_format='channel_last')
                x = self.pointwise_conv2(x)
                x = x.permute(0, 3, 1, 2)  # (N, H, W, C) -> (N, C, H, W)
            else:
                x = self.norm(x, data_format='channel_first')
                x = self.pointwise_conv1(x)
                x = self.act(x)

                if self.grn is not None:
                    x = self.grn(x, data_format='channel_first')
                x = self.pointwise_conv2(x)

            if self.gamma is not None:
                x = x.mul(self.gamma.view(1, -1, 1, 1))

            x *= SparseHelper._get_active_map_or_index(
                H=x.shape[2], returning_active_map=True)

            x = shortcut + self.drop_path(x)
            return x

        if self.with_cp and x.requires_grad:
            x = cp.checkpoint(_inner_forward, x)
        else:
            x = _inner_forward(x)
        return x


@MODELS.register_module()
class SparseConvNeXt(ConvNeXt):
    """ConvNeXt with sparse module conversion function.

    Modified from
    https://github.com/keyu-tian/SparK/blob/main/models/convnext.py
    and
    https://github.com/keyu-tian/SparK/blob/main/encoder.py
    To use ConvNeXt v2, please set ``use_grn=True`` and ``layer_scale_init_value=0.``.

    Args:
        arch (str | dict): The model's architecture. If string, it should be
            one of architecture in ``ConvNeXt.arch_settings``. And if dict, it
            should include the following two keys:
            - depths (list[int]): Number of blocks at each stage.
            - channels (list[int]): The number of channels at each stage.
            Defaults to 'tiny'.
        in_channels (int): Number of input image channels. Defaults to 3.
        stem_patch_size (int): The size of one patch in the stem layer.
            Defaults to 4.
        norm_cfg (dict): The config dict for norm layers.
            Defaults to ``dict(type='SparseLN2d', eps=1e-6)``.
        act_cfg (dict): The config dict for activation between pointwise
            convolution. Defaults to ``dict(type='GELU')``.
        linear_pw_conv (bool): Whether to use linear layer to do pointwise
            convolution. Defaults to True.
        use_grn (bool): Whether to add Global Response Normalization in the
            blocks. Defaults to False.
        drop_path_rate (float): Stochastic depth rate. Defaults to 0.
        layer_scale_init_value (float): Init value for Layer Scale.
            Defaults to 1e-6.
        out_indices (Sequence | int): Output from which stages.
            Defaults to -1, means the last stage.
        frozen_stages (int): Stages to be frozen (all param fixed).
            Defaults to 0, which means not freezing any parameters.
        gap_before_output (bool): Whether to globally average the feature
            map before the final norm layer. In the official repo, it's only
            used in classification task. Defaults to True.
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed. Defaults to False.
        init_cfg (dict, optional): Initialization config dict.
    """  # noqa: E501

    def __init__(self,
                 arch: str = 'small',
                 in_channels: int = 3,
                 stem_patch_size: int = 4,
                 norm_cfg: dict = dict(type='SparseLN2d', eps=1e-6),
                 act_cfg: dict = dict(type='GELU'),
                 linear_pw_conv: bool = True,
                 use_grn: bool = False,
                 drop_path_rate: float = 0,
                 layer_scale_init_value: float = 1e-6,
                 out_indices: int = -1,
                 frozen_stages: int = 0,
                 gap_before_output: bool = True,
                 with_cp: bool = False,
                 init_cfg: Optional[Union[dict, List[dict]]] = [
                     dict(
                         type='TruncNormal',
                         layer=['Conv2d', 'Linear'],
                         std=.02,
                         bias=0.),
                     dict(
                         type='Constant', layer=['LayerNorm'], val=1.,
                         bias=0.),
                 ]):
        super(ConvNeXt, self).__init__(init_cfg=init_cfg)

        if isinstance(arch, str):
            assert arch in self.arch_settings, \
                f'Unavailable arch, please choose from ' \
                f'({set(self.arch_settings)}) or pass a dict.'
            arch = self.arch_settings[arch]
        elif isinstance(arch, dict):
            assert 'depths' in arch and 'channels' in arch, \
                f'The arch dict must have "depths" and "channels", ' \
                f'but got {list(arch.keys())}.'

        self.depths = arch['depths']
        self.channels = arch['channels']
        assert (isinstance(self.depths, Sequence)
                and isinstance(self.channels, Sequence)
                and len(self.depths) == len(self.channels)), \
            f'The "depths" ({self.depths}) and "channels" ({self.channels}) ' \
            'should be both sequence with the same length.'

        self.num_stages = len(self.depths)

        if isinstance(out_indices, int):
            out_indices = [out_indices]
        assert isinstance(out_indices, Sequence), \
            f'"out_indices" must by a sequence or int, ' \
            f'get {type(out_indices)} instead.'
        for i, index in enumerate(out_indices):
            if index < 0:
                out_indices[i] = 4 + index
                assert out_indices[i] >= 0, f'Invalid out_indices {index}'
        self.out_indices = out_indices

        self.frozen_stages = frozen_stages
        self.gap_before_output = gap_before_output

        # 4 downsample layers between stages, including the stem layer.
        self.downsample_layers = ModuleList()
        stem = nn.Sequential(
            nn.Conv2d(
                in_channels,
                self.channels[0],
                kernel_size=stem_patch_size,
                stride=stem_patch_size),
            build_norm_layer(norm_cfg, self.channels[0]),
        )
        self.downsample_layers.append(stem)

        # stochastic depth decay rule
        dpr = [
            x.item()
            for x in torch.linspace(0, drop_path_rate, sum(self.depths))
        ]
        block_idx = 0

        # 4 feature resolution stages, each consisting of multiple residual
        # blocks
        self.stages = nn.ModuleList()
        for i in range(self.num_stages):
            depth = self.depths[i]
            channels = self.channels[i]

            if i >= 1:
                downsample_layer = nn.Sequential(
                    build_norm_layer(norm_cfg, self.channels[i - 1]),
                    nn.Conv2d(
                        self.channels[i - 1],
                        channels,
                        kernel_size=2,
                        stride=2),
                )
                self.downsample_layers.append(downsample_layer)

            stage = Sequential(*[
                SparseConvNeXtBlock(
                    in_channels=channels,
                    drop_path_rate=dpr[block_idx + j],
                    norm_cfg=norm_cfg,
                    act_cfg=act_cfg,
                    linear_pw_conv=linear_pw_conv,
                    layer_scale_init_value=layer_scale_init_value,
                    use_grn=use_grn,
                    with_cp=with_cp) for j in range(depth)
            ])
            block_idx += depth

            self.stages.append(stage)

        self.dense_model_to_sparse(m=self)

    def forward(self, x):
        outs = []
        for i, stage in enumerate(self.stages):
            x = self.downsample_layers[i](x)
            x = stage(x)
            if i in self.out_indices:
                if self.gap_before_output:
                    gap = x.mean([-2, -1], keepdim=True)
                    outs.append(gap.flatten(1))
                else:
                    outs.append(x)

        return tuple(outs)

    def dense_model_to_sparse(self, m: nn.Module) -> nn.Module:
        """Convert regular dense modules to sparse modules."""
        output = m
        if isinstance(m, nn.Conv2d):
            m: nn.Conv2d
            bias = m.bias is not None
            output = SparseConv2d(
                m.in_channels,
                m.out_channels,
                kernel_size=m.kernel_size,
                stride=m.stride,
                padding=m.padding,
                dilation=m.dilation,
                groups=m.groups,
                bias=bias,
                padding_mode=m.padding_mode,
            )
            output.weight.data.copy_(m.weight.data)
            if bias:
                output.bias.data.copy_(m.bias.data)

        elif isinstance(m, nn.MaxPool2d):
            m: nn.MaxPool2d
            output = SparseMaxPooling(
                m.kernel_size,
                stride=m.stride,
                padding=m.padding,
                dilation=m.dilation,
                return_indices=m.return_indices,
                ceil_mode=m.ceil_mode)

        elif isinstance(m, nn.AvgPool2d):
            m: nn.AvgPool2d
            output = SparseAvgPooling(
                m.kernel_size,
                m.stride,
                m.padding,
                ceil_mode=m.ceil_mode,
                count_include_pad=m.count_include_pad,
                divisor_override=m.divisor_override)

        # elif isinstance(m, (nn.BatchNorm2d, nn.SyncBatchNorm)):
        #     m: nn.BatchNorm2d
        #     output = (SparseSyncBatchNorm2d
        #               if enable_sync_bn else SparseBatchNorm2d)(
        #                   m.weight.shape[0],
        #                   eps=m.eps,
        #                   momentum=m.momentum,
        #                   affine=m.affine,
        #                   track_running_stats=m.track_running_stats)
        #     output.weight.data.copy_(m.weight.data)
        #     output.bias.data.copy_(m.bias.data)
        #     output.running_mean.data.copy_(m.running_mean.data)
        #     output.running_var.data.copy_(m.running_var.data)
        #     output.num_batches_tracked.data.copy_(m.num_batches_tracked.data)

        for name, child in m.named_children():
            output.add_module(name, self.dense_model_to_sparse(child))
        del m
        return output